Product Description
Model | BST80AFZ/BSZ |
Voltage/frequency (V/Hz) | 220-240V/50Hz; 110-115v/60Hz |
Input power(W) | 50-80 |
Speed (r/min) | ≥1380 1650 |
Primary vacuumKPa | -90KPa |
Secondary vacuumKPa | -98KPa |
Restart pressure (KPa) | 0KPa |
Rated volume flow (m3/h) | 2.1m3/h@0KPa; |
Noise dB(A) | ≤42dB(A) |
Ambient temperature ºC | -5~40 ºC |
Insulation Class | B |
Cold insulation resistance (MΩ) | ≥100MΩ |
Voltage resistance | 1500V/50Hz 1min (No breakdown) |
Thermal protector | Automatic reset 135±5ºC |
Capacitance (μF) | 4μF±5% 10μF±5% |
Net weight (Kg) | 2.2Kg |
Installation Dimensions (mm) | 60×77 4*M5 |
External Dimensions (mm) | 140*89*116mm |
Typical application | |
Respirator (ventilator) | oxygenerator |
Disinfectant sprayer | Blood analyzer |
Clinical aspirator | Dialysis / hemodialysis |
Dental vacuum drying oven | Air suspension system |
Vending machines / coffee blenders and coffee machines | Massage chair |
Chromatographic analyzer | Teaching instrument platform |
On board access control system | Airborne oxygen generator |
Why choose CHINAMFG air compressor
1. It saves 10-30% energy than the air compressor produced by ordinary manufacturers.
2. It is widely used in medical oxygen generator and ventilator .
3. A large number of high-speed train and automobile application cases, supporting – 41 to 70 ºC, 0-6000 CHINAMFG above sea level .
4. Medium and high-end quality, with more than 7000 hours of trouble free operation for conventional products and more than 15000 hours of trouble free operation for high-end products.
5. Simple operation, convenient maintenance and remote guidance.
6. Faster delivery time, generally completed within 25 days within 1000 PCs.
Machine Parts
Name: Motor
Brand: COMBESTAIR
Original: China
1.The coil adopts the fine pure copper enameled wire, and the rotor adopts the famous brand silicon steel sheet such as ZheJiang baosteel.
2.The customer can choose the insulation grade B or F motor according to What he wants.
3.The motor has a built-in thermal protector, which can select external heat sensor.
4.Voltage from AC100V ~120V, 200V ~240V, 50Hz / 60Hz, DC6V~200V optional ; AC motor can choose double voltage double frequency ; DC Motor can choose the control of the infinitely variable speed.
Machine Parts
Name: Bearing
Brand: ERB , CHINAMFG , NSK
Original: China ect.
1.Standard products choose the special bearing ‘ERB’ in oil-free compressor, and the environment temperature tolerance from -50ºC to 180 ºC . Ensure no fault operation for 20,000 hours.
2.Customers can select TPI, NSK and other imported bearings according to the working condition.
Machine Parts
Name: Valve plates
Brand: SANDVIK
Original: Sweden
1.Custom the valve steel of Sweden SANDVIK; Good flexibility and long durability.
2.Thickness from 0.08mm to 1.2mm, suitable for maximum pressure from 0.8 MPa to 1.2 MPa.
Machine Parts
Name: Piston ring
Brand: COMBESTAIR-OEM , Saint-Gobain
Original: China , France
1.Using domestic famous brand–Polytetrafluoroethylene composite material; Wear-resistant high temperature; Ensure more than 10,000 hours of service life.
2.High-end products: you can choose the ST.gobain’s piston ring from the American import.
serial number |
Code number | Name and specification | Quantity | Material | Note |
1 | 212571109 | Fan cover | 2 | Reinforced nylon 1571 | |
2 | 212571106 | Left fan | 1 | Reinforced nylon 1571 | |
3 | 212571101 | Left box | 1 | Die-cast aluminum alloy YL104 | |
4 | 212571301 | Connecting rod | 2 | Die-cast aluminum alloy YL104 | |
5 | 212571304 | Piston cup | 2 | PHB filled PTFE | |
6 | 212571302 | Clamp | 2 | Die-cast aluminum alloy YL102 | |
7 | 7050616 | Screw of cross head | 2 | Carbon structural steel of cold heading | M6•16 |
8 | 212571501 | Air cylinder | 2 | Thin wall pipe of aluninun alloy 6A02T4 | |
9 | 17103 | Seal ring of Cylinder | 2 | Silicone rubber | |
10 | 212571417 | Sealing ring of cylinder cover | 2 | Silicone rubber | |
11 | 212571401 | Cylinder head | 2 | Die-cast aluminum alloy YL102 | |
12 | 7571525 | Screw of inner hexagon Cylinder head | 12 | M5•25 | |
13 | 17113 | Sealing ring of connecting pipe | 4 | Silicong rubber | |
14 | 212571801 | Connecting pipe | 2 | Aluminum and aluminum alloy connecting rod LY12 | |
15 | 7100406 | Screw of Cross head | 4 | 1Cr13N19 | M4•6 |
16 | 212571409 | Limit block | 2 | Die-cast aluminum alloy YL102 | |
17 | 000402.2 | Air outlet valve | 2 | 7Cr27 quenching steel belt of The Swedish sandvik | |
18 | 212571403 | valve | 2 | Die-cast aluminum alloy YL102 | |
19 | 212571404 | Air inlet valve | 2 | 7Cr27 quenching steel belt of The Swedish sandvik | |
20 | 212571406 | Metal gasket | 2 | Stainless steel plate of heat and acidresistance | |
21 | 212571107 | Right fan | 1 | Reinforced nylon 1571 | |
22 | 212571201 | Crank | 2 | Gray castiron H20-40 | |
23 | 14040 | Bearing 6006-2Z | 2 | ||
24 | 70305 | Tighten screw of inner hexagon flat end | 2 | M8•8 | |
25 | 7571520 | Screw of inner hexagon Cylinder head | 2 | M5•20 | |
26 | 212571102 | Right box | 1 | Die-cast aluminum alloy YL104 | |
27 | 6P-4 | Lead protective ring | 1 | ||
28 | 7095712-211 | Hexagon head bolt | 2 | Carbon structural steel of cold heading | M5•152 |
29 | 715710-211 | Screw of Cross head | 2 | Carbon structural steel of cold heading | M5•120 |
30 | 16602 | Light spring washer | 4 | ø5 | |
31 | 212571600 | Stator | 1 | ||
32 | 70305 | Lock nut of hexagon flange faces | 2 | ||
33 | 212571700 | Rotor | 1 | ||
34 | 14032 | Bearing 6203-2Z | 2 |
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our factory is located in Linbei industrial area No.30 HangZhou City of ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: Generally, 1000 pcs can be delivered within 25 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
Q7:Can you accept non-standard customization?
A7:We have the ability to develop new products and can customize, develop and research according to your requirements
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Remote Guided Maintenance |
---|---|
Warranty: | 2 Years |
Principle: | Mixed-Flow Compressor |
Samples: |
US$ 30/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Are there any specific brands or models of AC vacuum pumps that are highly regarded?
Yes, there are several brands and models of AC (air conditioning) vacuum pumps that are highly regarded in the industry for their performance, reliability, and durability. Some of these well-regarded brands and models include:
- 1. Robinair: The Robinair brand offers a range of high-quality vacuum pumps known for their durability and efficiency. The Robinair 15500 and 15800 series pumps are popular choices among HVAC professionals.
- 2. Yellow Jacket: Yellow Jacket vacuum pumps are known for their robust construction and reliable performance. The Yellow Jacket SuperEvac series, including models 93560 and 93580, are commonly used in the HVAC industry.
- 3. JB Industries: JB Industries produces a variety of vacuum pumps suitable for AC system evacuation. The DV-6E and Eliminator series pumps are well-regarded for their performance and longevity.
- 4. CPS Products: CPS offers vacuum pumps designed for HVAC applications, with models like the VP6D and VP8D gaining recognition for their efficiency and durability.
- 5. Fieldpiece: Fieldpiece vacuum pumps, such as the VP85 and VP67, are known for their portability and reliability, making them popular among HVAC technicians.
While these brands and models are often recommended by professionals, it’s essential to consider your specific needs and budget when choosing an AC vacuum pump. Factors like the size of the systems you work on, the frequency of use, and additional features can influence your decision. Reading user reviews and seeking recommendations from experienced HVAC technicians can also help you make an informed choice.
What safety precautions should be taken when using an AC vacuum pump?
When using an AC vacuum pump, it is important to follow proper safety precautions to ensure personal safety and prevent potential hazards. Here’s a detailed explanation of the safety precautions that should be taken when using an AC vacuum pump:
- Read the User Manual: Before operating the AC vacuum pump, carefully read and understand the manufacturer’s user manual and instructions. Familiarize yourself with the specific safety guidelines and recommendations provided by the manufacturer.
- Protective Gear: Wear appropriate personal protective equipment (PPE) such as safety glasses, gloves, and closed-toe shoes when using the vacuum pump. PPE helps protect against potential hazards, including eye injuries, chemical exposure, or physical injuries during operation.
- Ventilation: Ensure that the area where the AC vacuum pump is operated has adequate ventilation. Good ventilation helps prevent the buildup of potentially harmful gases, fumes, or vapors that may be generated during the evacuation process.
- Electrical Safety: Follow electrical safety precautions when using the vacuum pump. Ensure that the electrical connections and power supply are in good condition. If the pump is powered by electricity, use grounded outlets and appropriate extension cords as recommended by the manufacturer.
- Secure Placement: Place the AC vacuum pump on a stable and level surface to prevent tipping or falling during operation. Ensure that the pump is securely positioned and cannot be easily knocked over.
- Proper Use: Use the AC vacuum pump according to its intended purpose and within its specified operational limits. Avoid exceeding the recommended vacuum level or operating duration to prevent equipment damage or potential hazards.
- Avoid Overheating: Pay attention to the temperature of the vacuum pump during operation. Some pumps may generate heat, and prolonged use without proper cooling or rest intervals can lead to overheating. Follow the manufacturer’s guidelines for cooling and rest periods, if applicable.
- Inspect Hoses and Connections: Regularly inspect the hoses, fittings, and connections associated with the vacuum pump. Ensure that they are in good condition, free from damage or leaks. Tighten any loose connections to maintain proper vacuum integrity and prevent accidents or injuries.
- Emergency Stop: Familiarize yourself with the emergency stop or shut-off feature of the AC vacuum pump. In case of an emergency or abnormal operation, know how to quickly and safely stop the pump to avoid further risks or damage.
- Training and Experience: Operate the AC vacuum pump only if you have received proper training or have sufficient experience. If you are unfamiliar with its operation or maintenance, seek guidance from a qualified professional or technician.
By following these safety precautions, you can minimize the risk of accidents, injuries, or equipment damage when using an AC vacuum pump. Safety should always be a priority to ensure a safe working environment and protect both yourself and others involved in the operation.
What is an AC vacuum pump, and how does it work?
An AC vacuum pump is a type of vacuum pump that operates using an alternating current (AC) power source. It is commonly used in various applications that require the creation of a vacuum, such as HVAC (heating, ventilation, and air conditioning) systems, refrigeration, automotive repair, and scientific research. Here’s a detailed explanation of how an AC vacuum pump works:
Basic Operation: The operation of an AC vacuum pump involves several key components:
– Electric Motor: The AC vacuum pump is equipped with an electric motor that drives its operation. The motor converts electrical energy from the AC power source into mechanical energy to drive the pump’s internal components.
– Rotating Shaft: The electric motor is connected to a rotating shaft, which transmits the rotational motion to the pump’s internal mechanisms.
– Impeller or Vane: The rotating shaft is attached to an impeller or vane assembly located inside the pump’s housing. The impeller or vane is designed with curved blades that create a rotating motion when driven by the motor.
– Intake Port: The pump has an intake port that allows air or gas to enter the pump’s chamber. The intake port is typically equipped with a valve or check valve that ensures one-way flow into the pump.
– Exhaust Port: The pump also has an exhaust port through which the air or gas is expelled from the pump after the vacuum is created.
Working Principle: The AC vacuum pump operates based on the principle of positive displacement. Here’s a step-by-step explanation of its working process:
1. The AC vacuum pump is connected to the vacuum system or the device from which air or gas needs to be evacuated.
2. The electric motor is activated, and it drives the rotating shaft.
3. As the shaft rotates, it imparts motion to the impeller or vane assembly.
4. The impeller or vane blades create a rotating motion inside the pump’s chamber, which causes the air or gas to be drawn into the pump through the intake port.
5. As the impeller or vane assembly continues to rotate, the volume inside the pump’s chamber decreases, leading to compression of the air or gas.
6. This compression process causes the air or gas molecules to move closer together, resulting in an increase in pressure.
7. The compressed air or gas is then pushed out of the pump through the exhaust port.
8. The rotation of the impeller or vane assembly continues, creating a continuous cycle of intake, compression, and expulsion, which gradually reduces the pressure inside the vacuum system or device.
9. The process continues until the desired vacuum level is achieved.
It’s important to note that AC vacuum pumps may vary in design and construction depending on the specific application and manufacturer. Some AC vacuum pumps may incorporate additional features such as built-in filters, oil lubrication systems, or multiple stages of compression to enhance their performance and efficiency.
In summary, an AC vacuum pump is a type of vacuum pump that operates using an alternating current power source. It works based on the principle of positive displacement, where the rotating motion of an impeller or vane assembly creates a vacuum by drawing in air or gas through an intake port and expelling it through an exhaust port. AC vacuum pumps are widely used in HVAC systems, refrigeration, automotive repair, and scientific research applications.
editor by CX 2024-04-17
China Professional 200-300 L/Min Motor Happy Carton or Wooden Case Vacuum Centrifugal Pump vacuum pump ac
Product Description
Centrifugal Pump Application
Centrifugal single impeller low head water pumps for flow irrigation systems with high flow rate.
Suitable to pump clean water or non-aggressive liquid charged with small CHINAMFG impurity.
To be used in flow irrigation systems in gardening, agriculture and industrial fittings.
Operating conditions
*Liquid temperature up to 60
*Ambient temperature up to 40
*Total suction lift up to 9mt.
*Continuous duty
Motor
*Two-pole induction motor(n=2850r. P. M)
*Insulation Class B
*Protection IP44
Material
*Pump body: Cast iron
*Motor support: Cast iron, Aluminum for CPM-2 and HCT-S
*Motor housing: Aluminum, Cast iron for HPN
*Impeller: Brass, PPO for HMC-S, AISI 304 SS for HMCS-S
*Shaft with rotor: 45#steel, AISI 416 stainless steel if request
*Mechanical seal: Carbon/Ceramic
Single phase 220V-240V/50Hz
Single phase 110V-127V/60Hz if request
Single/three phase 220V/60Hz if request
NO. | TYPE | POWER | MAX.FLOW | MAX.HEAD | INLET/OUTLET | MAX.SUCT | N.W | PACKING DIMENSION | |
(Kw) | (Hp) | (L/min) | (m) | (Inch) | (m) | (K.g) | (mm) | ||
A | HCK-30 | 1.1 | 1.5 | 250 | 30 | 1.5″*1″ | 9 | 19 | 380*220*280 |
B | HCK-36 | 1.5 | 2 | 300 | 36 | 1.5″*1″ | 9 | 20 | 380*220*280 |
ZHangZhoug Happy Pump Industry Co., Ltd is a professional manufacturer with its own export right. We focus on the development and production of water pump for more than 20 years. Our products include a wide range of vortex pumps, centrifugal pumps, swimming pool pumps, jet pumps, submersible pumps, deep well submersible pumps, motors and so on. Our company has set up 4 workshops, metalwork, motor, rotor and assembly, and also have established pipelining operation from the pump body casting processing, motor embedded, rotor punching to assembly and the product testing. Our products are exported to many countries, especially the smart automatic pumps with plastic and copper material. In Vietnam, because of it’s environmental protection, they sell pretty well. Our company always provide excellent quality products and best service to customers.
FAQ
Q1: Are you a factory or just a trading company?
A1: Manufacturer,and we focus on the development and production of water pump for more than 20 years.
Q2: Is customized service available?
A2: Of course, OEM & ODM both are available.
Q3: How can I get the quotation?
A3: Leave us message with your purchase requirements and we will reply you within 1 hour on working time. And you may contact us directly by Trade Manager.
Q4:Can I buy 1 as sample?
A4: Yes, of course.
Q5: How about your quality control?
A5: Our professional QC will check the quality during the production and do the quality test before shipment.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Max.Head: | 30-50m |
---|---|
Max.Capacity: | 200-300 L/min |
Driving Type: | Motor |
Structure: | Single-stage Pump |
Power: | Electric |
Type: | Centrifugal Pump |
Samples: |
US$ 52.54/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What Are the Advantages of Using Oil-Sealed Vacuum Pumps?
Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:
1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.
2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.
3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.
4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.
5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.
6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.
7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.
8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.
9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.
10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.
These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.
How Do Vacuum Pumps Assist in Freeze-Drying Processes?
Freeze-drying, also known as lyophilization, is a dehydration technique used in various industries, including pharmaceutical manufacturing. Vacuum pumps play a crucial role in facilitating freeze-drying processes. Here’s a detailed explanation:
During freeze-drying, vacuum pumps assist in the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. The freeze-drying process involves three main stages: freezing, primary drying (sublimation), and secondary drying (desorption).
1. Freezing: In the first stage, the pharmaceutical product is frozen to a solid state. Freezing is typically achieved by lowering the temperature of the product below its freezing point. The frozen product is then placed in a vacuum chamber.
2. Primary Drying (Sublimation): Once the product is frozen, the vacuum pump creates a low-pressure environment within the chamber. By reducing the pressure, the boiling point of water or solvents present in the frozen product is lowered, allowing them to transition directly from the solid phase to the vapor phase through a process called sublimation. Sublimation bypasses the liquid phase, preventing potential damage to the product’s structure.
The vacuum pump maintains a low-pressure environment by continuously removing the water vapor or solvent vapor generated during sublimation. The vapor is drawn out of the chamber, leaving behind the freeze-dried product. This process preserves the product’s original form, texture, and biological activity.
3. Secondary Drying (Desorption): After the majority of the water or solvents have been removed through sublimation, the freeze-dried product may still contain residual moisture or solvents. In the secondary drying stage, the vacuum pump continues to apply vacuum to the chamber, but at a higher temperature. The purpose of this stage is to remove the remaining moisture or solvents through evaporation.
The vacuum pump maintains the low-pressure environment, allowing the residual moisture or solvents to evaporate at a lower temperature than under atmospheric pressure. This prevents potential thermal degradation of the product. Secondary drying further enhances the stability and shelf life of the freeze-dried pharmaceutical product.
By creating and maintaining a low-pressure environment, vacuum pumps enable efficient and controlled sublimation and desorption during the freeze-drying process. They facilitate the removal of water or solvents while minimizing the potential damage to the product’s structure and preserving its quality. Vacuum pumps also contribute to the overall speed and efficiency of the freeze-drying process by continuously removing the vapor generated during sublimation and evaporation. The precise control provided by vacuum pumps ensures the production of stable and high-quality freeze-dried pharmaceutical products.
Can Vacuum Pumps Be Used in Food Processing?
Yes, vacuum pumps are widely used in food processing for various applications. Here’s a detailed explanation:
Vacuum pumps play a crucial role in the food processing industry by enabling the creation and maintenance of vacuum or low-pressure environments. They offer several benefits in terms of food preservation, packaging, and processing. Here are some common applications of vacuum pumps in food processing:
1. Vacuum Packaging: Vacuum pumps are extensively used in vacuum packaging processes. Vacuum packaging involves removing air from the packaging container to create a vacuum-sealed environment. This process helps extend the shelf life of food products by inhibiting the growth of spoilage-causing microorganisms and reducing oxidation. Vacuum pumps are used to evacuate the air from the packaging, ensuring a tight seal and maintaining the quality and freshness of the food.
2. Freeze Drying: Vacuum pumps are essential in freeze drying or lyophilization processes used in food processing. Freeze drying involves removing moisture from food products while they are frozen, preserving their texture, flavor, and nutritional content. Vacuum pumps create a low-pressure environment that allows frozen water to directly sublimate from solid to vapor, resulting in the removal of moisture from the food without causing damage or loss of quality.
3. Vacuum Cooling: Vacuum pumps are utilized in vacuum cooling processes for rapid and efficient cooling of food products. Vacuum cooling involves placing the food in a vacuum chamber and reducing the pressure. This lowers the boiling point of water, facilitating the rapid evaporation of moisture and heat from the food, thereby cooling it quickly. Vacuum cooling helps maintain the freshness, texture, and quality of delicate food items such as fruits, vegetables, and bakery products.
4. Vacuum Concentration: Vacuum pumps are employed in vacuum concentration processes in the food industry. Vacuum concentration involves removing excess moisture from liquid food products to increase their solids content. By creating a vacuum, the boiling point of the liquid is reduced, allowing for gentle evaporation of water while preserving the desired flavors, nutrients, and viscosity of the product. Vacuum concentration is commonly used in the production of juices, sauces, and concentrates.
5. Vacuum Mixing and Deaeration: Vacuum pumps are used in mixing and deaeration processes in food processing. In the production of certain food products such as chocolates, confectioneries, and sauces, vacuum mixing is employed to remove air bubbles, achieve homogeneity, and improve product texture. Vacuum pumps aid in the removal of entrapped air and gases, resulting in smooth and uniform food products.
6. Vacuum Filtration: Vacuum pumps are utilized in food processing for vacuum filtration applications. Vacuum filtration involves separating solids from liquids or gases using a filter medium. Vacuum pumps create suction that draws the liquid or gas through the filter, leaving behind the solid particles. Vacuum filtration is commonly used in processes such as clarifying liquids, removing impurities, and separating solids from liquids in the production of beverages, oils, and dairy products.
7. Marinating and Brining: Vacuum pumps are employed in marinating and brining processes in the food industry. By applying a vacuum to the marinating or brining container, the pressure is reduced, allowing the marinade or brine to penetrate the food more efficiently. Vacuum marinating and brining help enhance flavor absorption, reduce marinating time, and improve the overall taste and texture of the food.
8. Controlled Atmosphere Packaging: Vacuum pumps are used in controlled atmosphere packaging (CAP) systems in the food industry. CAP involves modifying the gas composition within food packaging to extend the shelf life and maintain the quality of perishable products. Vacuum pumps aid in the removal of oxygen or other unwanted gases from the package, allowing the introduction of a desired gas mixture that preserves the food’s freshness and inhibits microbial growth.
These are just a few examples of how vacuum pumps are used in food processing. The ability to create and control vacuum or low-pressure environments is a valuable asset in preserving food quality, enhancing shelf life, and facilitating various processing techniques in the food industry.
editor by CX 2024-04-12
China Custom Wooden Box Fitted Motor Belloni 800*500*500mm China Vacuum Chemical Pump with Good quality
Product Description
Product Description
Product Parameters
Company Profile
Belloni(ZheJiang )Pump Manufacturing Co.,Ltd.is located at No.18,Xihu (West Lake) Dis.Jinqiuzhu Road,Shengci Town,HangZhou City,the lower reaches of the Yangtze River.The main products are:CQB magnetic pump,FJX forced circulation pump,ZB horizontalself-priming pump,fluorine-lined centrifugal pump,chemical desulfurization pump,horizontal centrifugal pump,underarm pump,split pump,rotor pump,BLN acid-resistantand wear-resistant pump ,CZ chemical centrifugal pump,UHB wear-resistant andcorrosion-resistant CHINAMFG pump,WFB sealless self-control self-priming pump,ZApetrochemical process pump,high-pressure oil pump,vertical pipeline pump,screwpump.Belloni Pump currently has 59 employees,including 12 professional and technicalpersonnel,6 inspection personnel,more than 100 sets of various gold cutting equipment,computer CAD-aided design,advanced detection and measurement devices,large-scale special processing equipment and Large lifting equipment,etc.The company hasthe production conditions for the whole process of design,casting,machining,assembly,and testing.At present,the company’s products have been widely used in petrochemical,agricultural irrigation and drainage,industrial water supply and drainage,municipalconstruction,sewage treatment,environmental landscape engineering and otherindustries.The company provides solutions for the safe transportation of industrial fluidsin the world.It is a scientific and technological enterprise integrating chemical pumpdesign,research and development,manufacturing,sales and service.The company’sbusiness philosophy of safety first,quality first,and innovation as the source has beenrecognized by various users in domestic and foreign markets;the company adheres tothe core value of “let customers worry-free”,Belloni pump industry continues to innovateand improve System service capabilities,committed to providing customers with safe,stable and efficient pump products and services,exceeding customer expectations andenhancing customer value!
Certifications
Packaging & Shipping
FAQ
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year |
---|---|
Warranty: | 1 Year |
Type: | Self-priming Pump With Outer Recirculation |
Air Engine Type: | Fitted Motor |
Theory: | Water Ring Type |
Transmission: | Direct Connection Transmission |
Samples: |
US$ 1000/pcs
1 pcs(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What Are the Advantages of Using Oil-Sealed Vacuum Pumps?
Oil-sealed vacuum pumps offer several advantages in various applications. Here’s a detailed explanation:
1. High Vacuum Performance: Oil-sealed vacuum pumps are known for their ability to achieve high levels of vacuum. They can create and maintain deep vacuum levels, making them suitable for applications that require a low-pressure environment. The use of oil as a sealing and lubricating medium helps in achieving efficient vacuum performance.
2. Wide Operating Range: Oil-sealed vacuum pumps have a wide operating range, allowing them to handle a broad spectrum of vacuum levels. They can operate effectively in both low-pressure and high-vacuum conditions, making them versatile for different applications across various industries.
3. Efficient and Reliable Operation: These pumps are known for their reliability and consistent performance. The oil-sealed design provides effective sealing, preventing air leakage and maintaining a stable vacuum level. They are designed to operate continuously for extended periods without significant performance degradation, making them suitable for continuous industrial processes.
4. Contamination Handling: Oil-sealed vacuum pumps are effective in handling certain types of contaminants that may be present in the process gases or air being evacuated. The oil acts as a barrier, trapping and absorbing certain particulates, moisture, and chemical vapors, preventing them from reaching the pump mechanism. This helps protect the pump internals from potential damage and contributes to the longevity of the pump.
5. Thermal Stability: The presence of oil in these pumps helps in dissipating heat generated during operation, contributing to their thermal stability. The oil absorbs and carries away heat, preventing excessive temperature rise within the pump. This thermal stability allows for consistent performance even during prolonged operation and helps protect the pump from overheating.
6. Noise Reduction: Oil-sealed vacuum pumps generally operate at lower noise levels compared to other types of vacuum pumps. The oil acts as a noise-damping medium, reducing the noise generated by the moving parts and the interaction of gases within the pump. This makes them suitable for applications where noise reduction is desired, such as laboratory environments or noise-sensitive industrial settings.
7. Versatility: Oil-sealed vacuum pumps are versatile and can handle a wide range of gases and vapors. They can effectively handle both condensable and non-condensable gases, making them suitable for diverse applications in industries such as chemical processing, pharmaceuticals, food processing, and research laboratories.
8. Cost-Effective: Oil-sealed vacuum pumps are often considered cost-effective options for many applications. They generally have a lower initial cost compared to some other types of high-vacuum pumps. Additionally, the maintenance and operating costs are relatively lower, making them an economical choice for industries that require reliable vacuum performance.
9. Simplicity and Ease of Maintenance: Oil-sealed vacuum pumps are relatively simple in design and easy to maintain. Routine maintenance typically involves monitoring oil levels, changing the oil periodically, and inspecting and replacing worn-out parts as necessary. The simplicity of maintenance procedures contributes to the overall cost-effectiveness and ease of operation.
10. Compatibility with Other Equipment: Oil-sealed vacuum pumps are compatible with various process equipment and systems. They can be easily integrated into existing setups or used in conjunction with other vacuum-related equipment, such as vacuum chambers, distillation systems, or industrial process equipment.
These advantages make oil-sealed vacuum pumps a popular choice in many industries where reliable, high-performance vacuum systems are required. However, it’s important to consider specific application requirements and consult with experts to determine the most suitable type of vacuum pump for a particular use case.
How Do Vacuum Pumps Assist in Freeze-Drying Processes?
Freeze-drying, also known as lyophilization, is a dehydration technique used in various industries, including pharmaceutical manufacturing. Vacuum pumps play a crucial role in facilitating freeze-drying processes. Here’s a detailed explanation:
During freeze-drying, vacuum pumps assist in the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. The freeze-drying process involves three main stages: freezing, primary drying (sublimation), and secondary drying (desorption).
1. Freezing: In the first stage, the pharmaceutical product is frozen to a solid state. Freezing is typically achieved by lowering the temperature of the product below its freezing point. The frozen product is then placed in a vacuum chamber.
2. Primary Drying (Sublimation): Once the product is frozen, the vacuum pump creates a low-pressure environment within the chamber. By reducing the pressure, the boiling point of water or solvents present in the frozen product is lowered, allowing them to transition directly from the solid phase to the vapor phase through a process called sublimation. Sublimation bypasses the liquid phase, preventing potential damage to the product’s structure.
The vacuum pump maintains a low-pressure environment by continuously removing the water vapor or solvent vapor generated during sublimation. The vapor is drawn out of the chamber, leaving behind the freeze-dried product. This process preserves the product’s original form, texture, and biological activity.
3. Secondary Drying (Desorption): After the majority of the water or solvents have been removed through sublimation, the freeze-dried product may still contain residual moisture or solvents. In the secondary drying stage, the vacuum pump continues to apply vacuum to the chamber, but at a higher temperature. The purpose of this stage is to remove the remaining moisture or solvents through evaporation.
The vacuum pump maintains the low-pressure environment, allowing the residual moisture or solvents to evaporate at a lower temperature than under atmospheric pressure. This prevents potential thermal degradation of the product. Secondary drying further enhances the stability and shelf life of the freeze-dried pharmaceutical product.
By creating and maintaining a low-pressure environment, vacuum pumps enable efficient and controlled sublimation and desorption during the freeze-drying process. They facilitate the removal of water or solvents while minimizing the potential damage to the product’s structure and preserving its quality. Vacuum pumps also contribute to the overall speed and efficiency of the freeze-drying process by continuously removing the vapor generated during sublimation and evaporation. The precise control provided by vacuum pumps ensures the production of stable and high-quality freeze-dried pharmaceutical products.
What Are the Primary Applications of Vacuum Pumps?
Vacuum pumps have a wide range of applications across various industries. Here’s a detailed explanation:
1. Industrial Processes:
Vacuum pumps play a vital role in numerous industrial processes, including:
– Vacuum Distillation: Vacuum pumps are used in distillation processes to lower the boiling points of substances, enabling separation and purification of various chemicals and compounds.
– Vacuum Drying: Vacuum pumps aid in drying processes by creating a low-pressure environment, which accelerates moisture removal from materials without excessive heat.
– Vacuum Packaging: Vacuum pumps are used in the food industry to remove air from packaging containers, prolonging the shelf life of perishable goods by reducing oxygen exposure.
– Vacuum Filtration: Filtration processes can benefit from vacuum pumps to enhance filtration rates by applying suction, facilitating faster separation of solids and liquids.
2. Laboratory and Research:
Vacuum pumps are extensively used in laboratories and research facilities for various applications:
– Vacuum Chambers: Vacuum pumps create controlled low-pressure environments within chambers for conducting experiments, testing materials, or simulating specific conditions.
– Mass Spectrometry: Mass spectrometers often utilize vacuum pumps to create the necessary vacuum conditions for ionization and analysis of samples.
– Freeze Drying: Vacuum pumps enable freeze-drying processes, where samples are frozen and then subjected to a vacuum, allowing the frozen water to sublimate directly from solid to vapor state.
– Electron Microscopy: Vacuum pumps are essential for electron microscopy techniques, providing the necessary vacuum environment for high-resolution imaging of samples.
3. Semiconductor and Electronics Industries:
High vacuum pumps are critical in the semiconductor and electronics industries for manufacturing and testing processes:
– Semiconductor Fabrication: Vacuum pumps are used in various stages of chip manufacturing, including deposition, etching, and ion implantation processes.
– Thin Film Deposition: Vacuum pumps create the required vacuum conditions for depositing thin films of materials onto substrates, as done in the production of solar panels, optical coatings, and electronic components.
– Leak Detection: Vacuum pumps are utilized in leak testing applications to detect and locate leaks in electronic components, systems, or pipelines.
4. Medical and Healthcare:
Vacuum pumps have several applications in the medical and healthcare sectors:
– Vacuum Assisted Wound Closure: Vacuum pumps are used in negative pressure wound therapy (NPWT), where they create a controlled vacuum environment to promote wound healing and removal of excess fluids.
– Laboratory Equipment: Vacuum pumps are essential in medical and scientific equipment such as vacuum ovens, freeze dryers, and centrifugal concentrators.
– Anesthesia and Medical Suction: Vacuum pumps are utilized in anesthesia machines and medical suction devices to create suction and remove fluids or gases from the patient’s body.
5. HVAC and Refrigeration:
Vacuum pumps are employed in the HVAC (Heating, Ventilation, and Air Conditioning) and refrigeration industries:
– Refrigeration and Air Conditioning Systems: Vacuum pumps are used during system installation, maintenance, and repair to evacuate moisture and air from refrigeration and air conditioning systems, ensuring efficient operation.
– Vacuum Insulation Panels: Vacuum pumps are utilized in the manufacturing of vacuum insulation panels, which offer superior insulation properties for buildings and appliances.
6. Power Generation:
Vacuum pumps play a role in power generation applications:
– Steam Condenser Systems: Vacuum pumps are used in power plants to remove non-condensable gases from steam condenser systems, improving thermal efficiency.
– Gas Capture: Vacuum pumps are utilized to capture and remove gases, such as hydrogen or helium, in nuclear power plants, research reactors, or particle accelerators.
These are just a few examples of the primary applications of vacuum pumps. The versatility and wide range of vacuum pump types make them essential in numerous industries, contributing to various manufacturing processes, research endeavors, and technological advancements.
editor by CX 2024-04-03
China best Wholesale Xgb-180 Copper Motor Machine 220V Peripheral Vacuum Pump for Agriculture and Restaurant vacuum pump belt
Product Description
Wholesale XGB-180 Copper Motor Machine 220V Peripheral Vacuum Pump For Agriculture And Restaurant
Our Services
· Customizing the fans according to customers’ requirements.
· Delivery time for sample order: 1-5 days, for pallets order 7-20 days after receiving clear payment
· Warranty: 1 year for repairing or replacement of fans, customs duty & freight not included
FAQ
Q: How To Order ?
A: Step 1, please tell us what model and quantity you need;
Step 2, then we will make a PI for you to confirm the order details;
Step 3, when we confirmed everything, can arrange the payment;
Step 4, finally we deliver the goods within the stipulated time.
Q: What is the MOQ?
R: 100 pieces, accept sample.
Q: When you ship my order
R: Normally container need 15-40days, sample 3-7DAYS
Q: How about the quality guarantee period?
R: One year.
Q: Do you have the certificates?
R: Yes, we have passed the CE and CCC certification.
Q: Do you offer ODM & OEM service.
R: Yes, we can custom design for specific application.
Q: When can I get the quotation?
R:We usually quote within 24 hours after we get your inquiry. If you are urgent to get the price, please send the message on trade management or call us directly.
Q: How can I get a sample to check your quality?
R:After price confirmed, you can require for samples to check quality.
If you need the samples, we will charge for the sample cost. But the sample cost can be refundable when your quantity of first order is above the MOQ
Q: What is your main market?
R:Southeast Asia, South America,Middle East.North America,EU
After-sales Service
1 year warranty for all kinds of products;
If you find any defective accessories first time, we will give you the new parts for free to replace in the next order, as an experienced manufacturer, you can rest assured of the quality and after-sales service.
Established in 1998,DET motor is a professional manufacturer and exporter that is concerned with the design, development and production of motors. We are located in ZheJiang city, with convenient transportation access. All of our products comply with international quality standards and are greatly appreciated in a variety of different markets throughout the world.
We have over 550 employees, an annual sales figure that exceeds USD300,000,000 and are currently exporting 50% of our production worldwide. Our well-equipped facilities and excellent quality control throughout all stages of production enables us to guarantee total customer satisfaction.
As a result of our high quality products and outstanding customer service, we have gained a global sales network CHINAMFG European.
If you are interested in any of our products or would like to discuss a custom order, please feel free to contact us. We are looking CHINAMFG to forming successful business relationships with new clients around the world in the near future.
Transfer | FOB/CIF |
Payment | TT/LC/VISA/MASTER |
Port | ZheJiang /HangZhou/HangZhou/HangZhou |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online |
---|---|
Warranty: | 1 Year |
Oil or Not: | Oil Free |
Samples: |
US$ 39/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How Are Vacuum Pumps Employed in the Production of Electronic Components?
Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:
The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:
1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.
2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.
3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.
4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.
5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.
6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.
7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.
It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.
In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.
Can Vacuum Pumps Be Used for Chemical Distillation?
Yes, vacuum pumps are commonly used in chemical distillation processes. Here’s a detailed explanation:
Chemical distillation is a technique used to separate or purify components of a mixture based on their different boiling points. The process involves heating the mixture to evaporate the desired component and then condensing the vapor to collect the purified substance. Vacuum pumps play a crucial role in chemical distillation by creating a reduced pressure environment, which lowers the boiling points of the components and enables distillation at lower temperatures.
Here are some key aspects of using vacuum pumps in chemical distillation:
1. Reduced Pressure: By creating a vacuum or low-pressure environment in the distillation apparatus, vacuum pumps lower the pressure inside the system. This reduction in pressure lowers the boiling points of the components, allowing distillation to occur at temperatures lower than their normal boiling points. This is particularly useful for heat-sensitive or high-boiling-point compounds that would decompose or become thermally degraded at higher temperatures.
2. Increased Boiling Point Separation: Vacuum distillation increases the separation between the boiling points of the components, making it easier to achieve a higher degree of purification. In regular atmospheric distillation, the boiling points of some components may overlap, leading to less effective separation. By operating under vacuum, the boiling points of the components are further apart, improving the selectivity and efficiency of the distillation process.
3. Energy Efficiency: Vacuum distillation can be more energy-efficient compared to distillation under atmospheric conditions. The reduced pressure lowers the required temperature for distillation, resulting in reduced energy consumption and lower operating costs. This is particularly advantageous when dealing with large-scale distillation processes or when distilling heat-sensitive compounds that require careful temperature control.
4. Types of Vacuum Pumps: Different types of vacuum pumps can be used in chemical distillation depending on the specific requirements of the process. Some commonly used vacuum pump types include:
– Rotary Vane Pumps: Rotary vane pumps are widely used in chemical distillation due to their ability to achieve moderate vacuum levels and handle various gases. They work by using rotating vanes to create chambers that expand and contract, enabling the pumping of gas or vapor.
– Diaphragm Pumps: Diaphragm pumps are suitable for smaller-scale distillation processes. They use a flexible diaphragm that moves up and down to create a vacuum and compress the gas or vapor. Diaphragm pumps are often oil-free, making them suitable for applications where avoiding oil contamination is essential.
– Liquid Ring Pumps: Liquid ring pumps can handle more demanding distillation processes and corrosive gases. They rely on a rotating liquid ring to create a seal and compress the gas or vapor. Liquid ring pumps are commonly used in chemical and petrochemical industries.
– Dry Screw Pumps: Dry screw pumps are suitable for high-vacuum distillation processes. They use intermeshing screws to compress and transport gas or vapor. Dry screw pumps are known for their high pumping speeds, low noise levels, and oil-free operation.
Overall, vacuum pumps are integral to chemical distillation processes as they create the necessary reduced pressure environment that enables distillation at lower temperatures. By using vacuum pumps, it is possible to achieve better separation, improve energy efficiency, and handle heat-sensitive compounds effectively. The choice of vacuum pump depends on factors such as the required vacuum level, the scale of the distillation process, and the nature of the compounds being distilled.
Are There Different Types of Vacuum Pumps Available?
Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:
Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:
1. Rotary Vane Vacuum Pumps:
– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.
– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.
2. Diaphragm Vacuum Pumps:
– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.
– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.
3. Scroll Vacuum Pumps:
– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.
– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.
4. Piston Vacuum Pumps:
– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.
– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.
5. Turbo Molecular Vacuum Pumps:
– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.
– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.
6. Diffusion Vacuum Pumps:
– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.
– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.
7. Cryogenic Vacuum Pumps:
– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.
– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.
These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.
editor by CX 2024-04-02
China Hot selling Electric Motor 2RS-5 Vane Rotary Vacuum Pump vacuum pump connector
Product Description
2RS-5
Physical Property
Voltage | 220V/50HZ | Displacement | 10CFM |
Voltage | 110V/60HZ | Displacement | 12CFM |
Ultimate Vacuum | 3*10-1PA | Motor Power | 1HP |
Fuel | Electric | Oil Capacity | 500ML |
Dimension | 260x135x275mm | Usage | Air Pump |
Structure | Double-stage Vacuum Pump | Color | Blue |
N.W.(1 Set) | 19Kg | Package Size | 51x21x34cm |
Application
The application is wide, such as vacuum refrigeration, refrigerant recovery device, tea packaging, air conditioner, automobile reparation, medical research equipment, packaging and printing equipment, scientific research, semi-conductor and etc.
Main Features
1) It can work in low temperature environment,even in cold winter.
2) Unlike the traditional ones ,RS series are much lighter,which is easy to carry.
3) RS series are attractive design in its outlook,looks more fashionable.
HangZhou CHINAMFG Refrigeration Technology Co., Ltd. is a large modern chemical enterprise specializing in manufacturing, researching and exporting high purity fluoro-chemicals, fine chemicals, hydrocarbon chemicals, etc. Its headquarter locates in ZheJiang capital HangZhou city, and has 2 profound manufacturing bases, separately in HangZhou City of ZheJiang Province and HangZhou city of ZHangZhoug Province. Our company takes “Science and Technology, Environmental Protection, Internationalization” as development direction and “First-class Technology, First-class Quality, First-class Service, First-class Efficiency” as service tenet.
Main Products:
R22 , R134A , R410A , R407c , R507 , R404A , R600 Refrigerant Gas, Manifold Gauge ,vacuum pump, compressor, etc.
Customer’s satisfactory is our forever pursue
FAQ
Q: If there’s space for you to lower the price?
A: The price in that field is changeable, so, fell free to ask for latest price and I’ll provide you the lowest.
Q: Could I use my own LOGO or design on the goods?
A: Of course, Customized logo and design on mass production are available.
Q: Can I visit your factory?
A: Sure, you can come at any time. We can also pick you up at airport or at the station.
Q: What is the delivery time?
A: One week for sample, 15 to 20 days for mass production.
Q: How about the payment term?
A: TT, L/C at sight, Paypal, Western Union, etc. Normally 30% T/T in advance, 30% TT before shipment, the balance against the copy of B/L in 7 days.
Q: How much discount can you offer?
A: We will do our best to offer the competitive price, the discount usually depends on the quantity.
Q: The shipping fare costs too much ,can you make it cheaper for us?
A: We will try our best to negotiate with shipping company,we save every penny for our customers,if it is possible ,you can designate your own shipping agency.
Q: Can I trust you?
A: Absolutely YES. We are “made in china” verified supplier.
Oil or Not: | Oil Free |
---|---|
Structure: | Rotary Vacuum Pump |
Working Conditions: | Dry |
Ultimate Vacuum: | 3*10-1PA |
Power: | 1HP |
Fuel: | Electric |
Samples: |
US$ 115/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How Are Vacuum Pumps Employed in the Production of Electronic Components?
Vacuum pumps play a crucial role in the production of electronic components. Here’s a detailed explanation:
The production of electronic components often requires controlled environments with low or no atmospheric pressure. Vacuum pumps are employed in various stages of the production process to create and maintain these vacuum conditions. Here are some key ways in which vacuum pumps are used in the production of electronic components:
1. Deposition Processes: Vacuum pumps are extensively used in deposition processes, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), which are commonly employed for thin film deposition on electronic components. These processes involve the deposition of materials onto substrates in a vacuum chamber. Vacuum pumps help create and maintain the necessary vacuum conditions required for precise and controlled deposition of the thin films.
2. Etching and Cleaning: Etching and cleaning processes are essential in the fabrication of electronic components. Vacuum pumps are used to create a vacuum environment in etching and cleaning chambers, where reactive gases or plasmas are employed to remove unwanted materials or residues from the surfaces of the components. The vacuum pumps help evacuate the chamber and ensure the efficient removal of byproducts and waste gases.
3. Drying and Bake-out: Vacuum pumps are utilized in the drying and bake-out processes of electronic components. After wet processes, such as cleaning or wet etching, components need to be dried thoroughly. Vacuum pumps help create a vacuum environment that facilitates the removal of moisture or solvents from the components, ensuring their dryness before subsequent processing steps. Additionally, vacuum bake-out is employed to remove moisture or other contaminants trapped within the components’ materials or structures, enhancing their reliability and performance.
4. Encapsulation and Packaging: Vacuum pumps are involved in the encapsulation and packaging stages of electronic component production. These processes often require the use of vacuum-sealed packaging to protect the components from environmental factors such as moisture, dust, or oxidation. Vacuum pumps assist in evacuating the packaging materials, creating a vacuum-sealed environment that helps maintain the integrity and longevity of the electronic components.
5. Testing and Quality Control: Vacuum pumps are utilized in testing and quality control processes for electronic components. Some types of testing, such as hermeticity testing, require the creation of a vacuum environment for evaluating the sealing integrity of electronic packages. Vacuum pumps help evacuate the testing chambers, ensuring accurate and reliable test results.
6. Soldering and Brazing: Vacuum pumps play a role in soldering and brazing processes for joining electronic components and assemblies. Vacuum soldering is a technique used to achieve high-quality solder joints by removing air and reducing the risk of voids, flux residuals, or oxidation. Vacuum pumps assist in evacuating the soldering chambers, creating the required vacuum conditions for precise and reliable soldering or brazing.
7. Surface Treatment: Vacuum pumps are employed in surface treatment processes for electronic components. These processes include plasma cleaning, surface activation, or surface modification techniques. Vacuum pumps help create the necessary vacuum environment where plasma or reactive gases are used to treat the component surfaces, improving adhesion, promoting bonding, or altering surface properties.
It’s important to note that different types of vacuum pumps may be used in electronic component production, depending on the specific process requirements. Commonly used vacuum pump technologies include rotary vane pumps, turbo pumps, cryogenic pumps, and dry pumps.
In summary, vacuum pumps are essential in the production of electronic components, facilitating deposition processes, etching and cleaning operations, drying and bake-out stages, encapsulation and packaging, testing and quality control, soldering and brazing, as well as surface treatment. They enable the creation and maintenance of controlled vacuum environments, ensuring precise and reliable manufacturing processes for electronic components.
How Do Vacuum Pumps Assist in Freeze-Drying Processes?
Freeze-drying, also known as lyophilization, is a dehydration technique used in various industries, including pharmaceutical manufacturing. Vacuum pumps play a crucial role in facilitating freeze-drying processes. Here’s a detailed explanation:
During freeze-drying, vacuum pumps assist in the removal of water or solvents from pharmaceutical products while preserving their structure and integrity. The freeze-drying process involves three main stages: freezing, primary drying (sublimation), and secondary drying (desorption).
1. Freezing: In the first stage, the pharmaceutical product is frozen to a solid state. Freezing is typically achieved by lowering the temperature of the product below its freezing point. The frozen product is then placed in a vacuum chamber.
2. Primary Drying (Sublimation): Once the product is frozen, the vacuum pump creates a low-pressure environment within the chamber. By reducing the pressure, the boiling point of water or solvents present in the frozen product is lowered, allowing them to transition directly from the solid phase to the vapor phase through a process called sublimation. Sublimation bypasses the liquid phase, preventing potential damage to the product’s structure.
The vacuum pump maintains a low-pressure environment by continuously removing the water vapor or solvent vapor generated during sublimation. The vapor is drawn out of the chamber, leaving behind the freeze-dried product. This process preserves the product’s original form, texture, and biological activity.
3. Secondary Drying (Desorption): After the majority of the water or solvents have been removed through sublimation, the freeze-dried product may still contain residual moisture or solvents. In the secondary drying stage, the vacuum pump continues to apply vacuum to the chamber, but at a higher temperature. The purpose of this stage is to remove the remaining moisture or solvents through evaporation.
The vacuum pump maintains the low-pressure environment, allowing the residual moisture or solvents to evaporate at a lower temperature than under atmospheric pressure. This prevents potential thermal degradation of the product. Secondary drying further enhances the stability and shelf life of the freeze-dried pharmaceutical product.
By creating and maintaining a low-pressure environment, vacuum pumps enable efficient and controlled sublimation and desorption during the freeze-drying process. They facilitate the removal of water or solvents while minimizing the potential damage to the product’s structure and preserving its quality. Vacuum pumps also contribute to the overall speed and efficiency of the freeze-drying process by continuously removing the vapor generated during sublimation and evaporation. The precise control provided by vacuum pumps ensures the production of stable and high-quality freeze-dried pharmaceutical products.
Are There Different Types of Vacuum Pumps Available?
Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:
Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:
1. Rotary Vane Vacuum Pumps:
– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.
– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.
2. Diaphragm Vacuum Pumps:
– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.
– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.
3. Scroll Vacuum Pumps:
– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.
– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.
4. Piston Vacuum Pumps:
– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.
– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.
5. Turbo Molecular Vacuum Pumps:
– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.
– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.
6. Diffusion Vacuum Pumps:
– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.
– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.
7. Cryogenic Vacuum Pumps:
– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.
– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.
These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.
editor by CX 2023-12-08
China Good quality Chemical Electric Motor Driven Diaphragm Dosing Metering Pump manufacturer
Product Description
Chemical Electric Motor Driven Diaphragm Dosing Metering Pump
Pumps works with shearing, grinding high-speed stirring Grinding process occurs in the relative movement between the 2 teeth with 1 revolving in high speed and another still, which makes the material between the teeth receive strong shearing and abrasion in addition to high frequency vibration and high speed swirl. The above forces effectively evenly disperse, emulsify, smash the material.
Colloid mill works with shearing, grinding high-speed stirring Grinding process occurs in the relative movement between the 2 teeth with 1 revolving in high speed and another still, which makes the material between the teeth receive strong shearing and abrasion in addition to high frequency vibration and high speed swirl. The above forces effectively evenly disperse, emulsify, smash the material.
Tchnical Parameters 🙁 For reference ONly )
Model |
Power |
Capacity
|
Fineness
|
Weight |
Machine Size |
FX-50 |
1.5kw |
10-15 kg/h |
50-100 mesh |
50 kg |
530*260*580 mm |
FX-80 |
4kw |
60-80 kg/h |
80-150 mesh |
150 kg |
600*410*930 mm |
FX-110 |
7.5kw |
100-200 kg/h |
80-150 mesh
|
175 kg |
700*430*1000 mm |
FX-130 |
11kw |
300-500 kg/h |
80-200 mesh |
285 kg |
990*440*1000 mm |
FX-160 |
15kw |
500-600kg/h |
80-200 mesh |
300kg | 1000*460*1050 mm |
FX-180 |
18.5kw |
700-800 kg/h |
80-200 mesh |
375 kg |
1000*490*1100 mm |
FX-210 |
30kw |
1000-1200kg/h |
80-200 mesh | 700kg | 1260*600*1230 mm |
FX-240 |
45kw |
1200-1500 kg/h |
100-200 mesh |
920 kg |
1330*630*1280mm |
FX-300 |
75kw
|
3000-4000 kg/h |
100-200 mesh |
1300 kg |
1500*800*1120mm |
After-sales Service
1.Warranty time: 1 year, from the date which the product is qualified commissioning.
Any damage except the wrong operation during warranty period is repaired freely.But the travel and hotel expenses should be count on buyer.
2. Commissioning services: the product’s installation and commissioning at the demand side, our engineers will not leave there until get your agreement.
3. Training services: our engineers will train your staff to operate it during the period of installation and commissioning,
and they will not leave there until your staff can operate it properly and normally.
4. Maintenance services: any malfunction happened, once you inquiry us, we will reply you within 48 hours except the special reasons.
5. Lifelong services: we provide lifelong services for all the products we sold out, and supply the spare parts with discount price.
6. Certificate services: we can provide related certificates to customers freely according to the request of customers.
7. Inspection services: you can ask the third part inspection company or your inspector to inspect the products before shipment.
8. The file: the Manual Specification, report of the material which used to the equipment and other documents related to the GMP authentication information will be provided by us.
RFQ
Q: Are you a factory?
A: Yes we are a factory with more than 20 years manufacturing experience. One is in JZheJiang Province,
Another is in HangZhou next to our office.
Q:I’m new in our industry,but I’m planing to set up a factory, what canI do?
A: We will design the most suitable proposal based on your actual situation, such as the daily production,raw material formula, factory layout, etc. Also we would like to intro- duce some excellent suppliers of raw materials, bottles,labels, etc if needed. After sales, engineer will be send to fields installation, training and commissioning.
Q: How can you control the quality before delivery?
A: First, our component/spare parts providers test their products before they offer com- ponents to us.Besides, our quality control team will test machines performance or running speed before shipment. We would like to invite you come to our factory to verify machines yourself. If your schedule is busy, we wil take a video to record the testing procedure and send the video to you.
Q:Are your machines difficult to operate? How do you teach us using the machine?
A: Our machines are fool-style operation design,very easy to operate.Besides,before delivery we will shoot instruction video to introduce machines’functions and to teach you how to use them.If needed engineers are available to come to your factory to help install machines, test machines and teach your staff to use the machines.
Q: Can I come to your factory to observe machine running?
A: Yes, customers are warmly welcome to visit our factory.
Q: Can you make the machine according to buyer’s request?
A: Yes,OEM is acceptable. Most of our machines are customized design based on cus- tomer’s requirements or situation
After-sales Service: | Oversea Installation Service |
---|---|
Warranty: | 1 Years |
Oil or Not: | Oil Free |
Structure: | Rotary Vacuum Pump |
Exhauster Method: | Entrapment Vacuum Pump |
Vacuum Degree: | Vacuum |
Customization: |
Available
|
|
---|
What is the recommended vacuum level for AC system evacuation?
The recommended vacuum level for AC (air conditioning) system evacuation is typically in the range of 500 to 1000 microns of mercury (Hg), also expressed as millibar (mbar). Achieving this level of vacuum is essential for several reasons:
- Moisture Removal: A deep vacuum helps remove moisture from the system, preventing issues like ice formation and corrosion.
- Air and Non-Condensable Gas Removal: It removes air and non-condensable gases that can affect system performance and efficiency.
- Preventing Contamination: A proper vacuum level reduces the risk of contaminants entering the system, which can lead to clogs and damage.
- Optimal Performance: AC systems operate more efficiently and cool better when free of moisture and air.
Technicians use vacuum gauges and micron meters to monitor the evacuation process and ensure that the desired vacuum level is achieved. The exact recommended vacuum level may vary slightly depending on specific system requirements, but staying within the 500 to 1000 micron range is a good practice for most AC systems.
Are there any environmental considerations associated with AC vacuum pumps?
Yes, there are environmental considerations associated with AC vacuum pumps. Here’s a detailed explanation of the environmental considerations related to AC vacuum pumps:
- Ozone Depletion: AC vacuum pumps can contribute to ozone depletion if they are not properly maintained or if refrigerants containing ozone-depleting substances (ODS) are released into the atmosphere. ODS, such as chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), have been phased out due to their harmful effects on the ozone layer. It is important to handle and dispose of refrigerants properly to prevent ozone depletion.
- Global Warming Potential (GWP): Some refrigerants used in HVAC systems have high global warming potential, meaning they have the potential to contribute significantly to global warming if released into the atmosphere. AC vacuum pumps play a role in handling and recovering refrigerants, which helps prevent their release and reduces the overall environmental impact.
- Refrigerant Leakage: AC vacuum pumps are used to evacuate and test HVAC systems for refrigerant leaks. Refrigerant leakage can have adverse environmental effects, contributing to both ozone depletion and global warming. Properly maintaining and servicing HVAC systems, including using AC vacuum pumps to detect and repair leaks, can help minimize refrigerant emissions.
- Waste Management: AC vacuum pumps require regular maintenance, including the disposal of used oils or lubricants. It is important to handle and dispose of these waste materials properly, following local regulations and guidelines to minimize their environmental impact.
- Energy Efficiency: While not directly related to the environment, energy efficiency is an important consideration in HVAC systems and the use of AC vacuum pumps. Energy-efficient pumps can help reduce overall energy consumption, leading to lower greenhouse gas emissions associated with energy production.
- Environmental Regulations: There are various environmental regulations and standards in place regarding the handling, use, and disposal of refrigerants and equipment used in HVAC systems. These regulations aim to reduce the environmental impact of AC vacuum pumps and other HVAC components, ensuring proper practices are followed to protect the environment.
To mitigate the environmental impact of AC vacuum pumps, it is important to adhere to proper refrigerant handling and disposal practices, conduct regular maintenance to minimize refrigerant leakage, and comply with relevant environmental regulations and standards. Additionally, using energy-efficient HVAC systems and equipment can contribute to reducing greenhouse gas emissions and overall environmental impact.
Are there specific maintenance requirements for AC vacuum pumps?
AC vacuum pumps require regular maintenance to ensure their optimal performance, longevity, and safe operation. Here’s a detailed explanation of the specific maintenance requirements for AC vacuum pumps:
- Oil Changes: If your AC vacuum pump is oil-lubricated, regular oil changes are necessary. Over time, the oil can become contaminated with moisture, debris, or byproducts of the evacuation process. Follow the manufacturer’s guidelines for the recommended oil change interval and use the appropriate oil type specified by the manufacturer.
- Filter Replacement: Some AC vacuum pumps incorporate filters to remove contaminants from the evacuated air or gas. These filters may need periodic replacement to maintain their effectiveness. Check the manufacturer’s recommendations for the filter replacement interval and ensure that you use compatible filters.
- Inspect and Clean Intake and Exhaust Ports: Regularly inspect and clean the intake and exhaust ports of the vacuum pump. These ports can accumulate dirt, debris, or contaminants over time, which can hinder the pump’s performance. Use a soft brush or compressed air to remove any obstructions and ensure unimpeded airflow.
- Lubrication: In addition to oil changes for oil-lubricated pumps, some vacuum pumps may require periodic lubrication of specific components. Refer to the manufacturer’s instructions for lubrication requirements and use the recommended lubricants in the specified quantities.
- Tighten Connections: Regularly check and tighten any connections, fittings, or hoses associated with the vacuum pump. Vibrations during operation can cause loosening over time, leading to leaks or decreased performance. Ensure all connections are secure to maintain proper vacuum integrity.
- Monitor Vacuum Level and Performance: Keep an eye on the vacuum level and performance of the pump during operation. If you notice a significant drop in the vacuum level or a decline in the pump’s performance, it may indicate a problem or the need for maintenance. Address any issues promptly to avoid further damage or inefficiency.
- Store Properly: When the AC vacuum pump is not in use, store it in a clean and dry environment. Protect it from extreme temperatures, moisture, and dust. Follow the manufacturer’s instructions for proper storage procedures.
- Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s user manual and guidelines for specific maintenance recommendations. Different vacuum pump models may have unique maintenance requirements, and it’s important to follow the manufacturer’s instructions for optimal performance and warranty compliance.
By adhering to these maintenance requirements, you can ensure the longevity, reliability, and efficient operation of your AC vacuum pump. Regular maintenance helps prevent malfunctions, reduces the risk of equipment damage, and maintains consistent vacuum performance for your AC systems or other vacuum-dependent applications.
editor by CX 2023-11-11
China Standard Silent Portable 3/4HP Twin Mini Rocking Food Industry Detailing Milker Braking Laboratory Dental Airbrush Piston Motor Head Air Dry Oilless Oil Free Vacuum Pump vacuum pump distributors
Product Description
Silent Portable 3/4HP Twin Mini Rocking Food Industry Detailing Milker Braking Laboratory Dental Airbrush Piston motor Head Oilless Oil Free Air Dry Vacuum Pump
Advantages:
Oil-less Vacuum Pumps / Air Compressors
PRANSCH oil-less rocking piston pump and air compressor combines the best characteristics of traditional piston pumps(air compressor) and diaphragm pumps into small units with excellent features.
- Light weight and very portable
- Durable and near ZERO maintenance
- Thermal protection (130 deg C)
- Power cord with plug, 1m length
- Shock mount
- Silencer – muffler
- Stainless steel vacuum and pressure gauge, both with oil damping
- Two stainless steel needle valves each with lock nut.
- All nickel plated fittings
- Power supply 230V, 50/60 Hz
This series is ideal for use in applications where oil-mist is undesirable. For examples, pressure/vacuum filtration, air sampling, water aeration, flame photometer, etc.
Specification:
Model | Frequency | Flow | Pressure | Power | Speed | Current | Voltage | Heat | Sound | Weight | Hole | Installation Dimensions |
Hz | L/min | Kpa | Kw | Min-1 | A | V | 0 C | db(A) | Kg | MM | MM | |
PM200V | 50 | 33 | -84 | 0.10 | 1380 | 0.45 | 210/235 | 5-40 | 48 | 1.8 | 5 | L100xW74 |
60 | 50 | -84 | 0.12 | 1450 | 0.90 | 110/125 | 5-40 | 48 | 1.8 | 5 | ||
PM300V | 50 | 66 | -86 | 0.12 | 1380 | 0.56 | 210/235 | 5-40 | 50 | 3.2 | 6 | L118xW70 |
60 | 75 | -86 | 0.14 | 1450 | 1.13 | 110/125 | 5-40 | 50 | 3.2 | 6 | ||
PM400V | 50 | 80 | -92 | 0.32 | 1380 | 0.95 | 210/235 | 5-40 | 56 | 6.0 | 6 | L153xW95 |
60 | 92 | -92 | 0.36 | 1450 | 1.91 | 110/125 | 5-40 | 56 | 6.0 | 6 | ||
PM550V | 50 | 100 | -92 | 0.32 | 1380 | 1.50 | 210/235 | 5-40 | 56 | 6.0 | 6 | L148xW83 |
60 | 110 | -92 | 0.36 | 1450 | 3.10 | 110/125 | 5-40 | 56 | 6.0 | 6 | ||
PM1400V | 50 | 166 | -92 | 0.45 | 1380 | 1.90 | 210/235 | 5-40 | 58 | 8.5 | 6 | L203xW86 |
60 | 183 | -92 | 0.52 | 1450 | 4.10 | 110/125 | 5-40 | 58 | 8.5 | 6 | ||
PM2000V | 50 | 216 | -92 | 0.55 | 1380 | 2.50 | 210/235 | 5-40 | 60 | 9.0 | 6 | L203xW86 |
60 | 250 | -92 | 0.63 | 1450 | 5.20 | 110/125 | 5-40 | 60 | 9.0 | 6 | ||
HP2400V | 50 | 225 | -94 | 0.90 | 1380 | 3.30 | 210/235 | 5-40 | 75 | 17.0 | 7 | L246xW127 |
60 | 258 | -94 | 1.10 | 1450 | 6.90 | 110/125 | 5-40 | 75 | 17.0 | 7 | ||
PM3000V | 50 | 230 | -94 | 1.10 | 1380 | 4.20 | 210/235 | 5-40 | 76 | 17.5 | 7 | L246xW127 |
60 | 266 | -94 | 1.30 | 1450 | 8.50 | 110/125 | 5-40 | 76 | 17.5 | 7 |
Why use a Rocking Piston Product?
Variety
Pransch oilless Rocking Piston air compressors and vacuum pumps, available in single, twin, miniature, and tankmounted
styles, are the perfect choice for hundreds of applications. Choose from dual frequency, shaded pole,
and permanent split capacitor (psc) electric motors with AC multi-voltage motors to match North American,
European, and CHINAMFG power supplies. A complete line of recommended accessories as well as 6, 12, and
24 volt DC models in brush and brushless types are also available.
Performance
The rocking piston combines the best characteristics of piston and diaphragm air compressors into a small unit
with exceptional performance. Air flow capabilities from 3.4 LPM to 5.5 CFM (9.35 m3/h), pressure to 175 psi
(12.0 bar) and vacuum capabilities up to 29 inHg (31 mbar). Horsepowers range from 1/20 to 1/2 HP
(0.04 to 0.37 kW).
Reliable
These pumps are made to stand up through years of use. The piston rod and bearing assembly are bonded
together, not clamped; they will not slip, loosen, or misalign to cause trouble.
Clean Air
Because CHINAMFG pumps are oil-free, they are ideal for use in applications in laboratories, hospitals, and the
food industry where oil mist contamination is undesirable.
Application:
- Transportation application include:Auto detailing Equipment,Braking Systems,Suspension Systems,Tire Inflators
- Food and Beverage application include:beverage dispensing,coffee and Espresso equipment,Food processing and packaging,Nitrogen Generation
- Medical and laboratory application include:Body fluid Analysis equipment,Dental compressors and hand tools,dental vacuum ovens,Dermatology equipment,eye surgery equipment,lab automation,Liposuction equipment,Medical aspiration,Nitrogen Generation,Oxygen concentrators,Vacuum Centrifuge,vacuum filtering,ventilators
- General industrial application include:Cable pressurization,core drilling
- Environmental application include:Dry sprinkler systems,Pond Aeration,Refrigerant Reclamation,Water Purification Systems
- Printing and packaging application include:vacuum frames
- material Handling application include:vacuum mixing
Oil or Not: | Oil Free |
---|---|
Structure: | Reciprocating Vacuum Pump |
Exhauster Method: | Positive Displacement Pump |
Vacuum Degree: | High Vacuum |
Work Function: | Mainsuction Pump |
Working Conditions: | Dry |
Customization: |
Available
|
|
---|
Can Vacuum Pumps Be Used for Vacuum Furnaces?
Yes, vacuum pumps can be used for vacuum furnaces. Here’s a detailed explanation:
Vacuum furnaces are specialized heating systems used in various industries for heat treatment processes that require controlled environments with low or no atmospheric pressure. Vacuum pumps play a crucial role in creating and maintaining the vacuum conditions necessary for the operation of vacuum furnaces.
Here are some key points regarding the use of vacuum pumps in vacuum furnaces:
1. Vacuum Creation: Vacuum pumps are used to evacuate the furnace chamber, creating a low-pressure or near-vacuum environment. This is essential for the heat treatment processes carried out in the furnace, as it helps eliminate oxygen and other reactive gases, preventing oxidation or unwanted chemical reactions with the heated materials.
2. Pressure Control: Vacuum pumps provide the means to control and maintain the desired pressure levels within the furnace chamber during the heat treatment process. Precise pressure control is necessary to achieve the desired metallurgical and material property changes during processes such as annealing, brazing, sintering, and hardening.
3. Contamination Prevention: By removing gases and impurities from the furnace chamber, vacuum pumps help prevent contamination of the heated materials. This is particularly important in applications where cleanliness and purity of the processed materials are critical, such as in the aerospace, automotive, and medical industries.
4. Rapid Cooling: Some vacuum furnace systems incorporate rapid cooling capabilities, known as quenching. Vacuum pumps assist in facilitating the rapid cooling process by removing the heat generated during quenching, ensuring efficient cooling and minimizing distortion or other unwanted effects on the treated materials.
5. Process Flexibility: Vacuum pumps provide flexibility in the type of heat treatment processes that can be performed in vacuum furnaces. Different heat treatment techniques, such as vacuum annealing, vacuum brazing, or vacuum carburizing, require specific pressure levels and atmospheric conditions that can be achieved and maintained with the use of vacuum pumps.
6. Vacuum Pump Types: Different types of vacuum pumps can be used in vacuum furnaces, depending on the specific requirements of the heat treatment process. Commonly used vacuum pump technologies include oil-sealed rotary vane pumps, dry screw pumps, diffusion pumps, and cryogenic pumps. The choice of vacuum pump depends on factors such as required vacuum level, pumping speed, reliability, and compatibility with the process gases.
7. Maintenance and Monitoring: Proper maintenance and monitoring of vacuum pumps are essential to ensure their optimal performance and reliability. Regular inspections, lubrication, and replacement of consumables (such as oil or filters) are necessary to maintain the efficiency and longevity of the vacuum pump system.
8. Safety Considerations: Operating vacuum furnaces with vacuum pumps requires adherence to safety protocols. This includes proper handling of potentially hazardous gases or chemicals used in the heat treatment processes, as well as following safety guidelines for operating and maintaining the vacuum pump system.
Overall, vacuum pumps are integral components of vacuum furnaces, enabling the creation and maintenance of the required vacuum conditions for precise and controlled heat treatment processes. They contribute to the quality, consistency, and efficiency of the heat treatment operations performed in vacuum furnaces across a wide range of industries.
Can Vacuum Pumps Be Used for Soil and Groundwater Remediation?
Vacuum pumps are indeed widely used for soil and groundwater remediation. Here’s a detailed explanation:
Soil and groundwater remediation refers to the process of removing contaminants from the soil and groundwater to restore environmental quality and protect human health. Vacuum pumps play a crucial role in various remediation techniques by facilitating the extraction and treatment of contaminated media. Some of the common applications of vacuum pumps in soil and groundwater remediation include:
1. Soil Vapor Extraction (SVE): Soil vapor extraction is a widely used remediation technique for volatile contaminants present in the subsurface. It involves the extraction of vapors from the soil by applying a vacuum to the subsurface through wells or trenches. Vacuum pumps create a pressure gradient that induces the movement of vapors towards the extraction points. The extracted vapors are then treated to remove or destroy the contaminants. Vacuum pumps play a vital role in SVE by maintaining the necessary negative pressure to enhance the volatilization and extraction of contaminants from the soil.
2. Dual-Phase Extraction (DPE): Dual-phase extraction is a remediation method used for the simultaneous extraction of both liquids (such as groundwater) and vapors (such as volatile organic compounds) from the subsurface. Vacuum pumps are utilized to create a vacuum in extraction wells or points, drawing out both the liquid and vapor phases. The extracted groundwater and vapors are then separated and treated accordingly. Vacuum pumps are essential in DPE systems for efficient and controlled extraction of both liquid and vapor-phase contaminants.
3. Groundwater Pumping and Treatment: Vacuum pumps are also employed in groundwater remediation through the process of pumping and treatment. They are used to extract contaminated groundwater from wells or recovery trenches. By creating a vacuum or negative pressure, vacuum pumps facilitate the flow of groundwater towards the extraction points. The extracted groundwater is then treated to remove or neutralize the contaminants before being discharged or re-injected into the ground. Vacuum pumps play a critical role in maintaining the required flow rates and hydraulic gradients for effective groundwater extraction and treatment.
4. Air Sparging: Air sparging is a remediation technique used to treat groundwater and soil contaminated with volatile organic compounds (VOCs). It involves the injection of air or oxygen into the subsurface to enhance the volatilization of contaminants. Vacuum pumps are utilized in air sparging systems to create a vacuum or negative pressure zone in wells or points surrounding the contaminated area. This induces the movement of air and oxygen through the soil, facilitating the release and volatilization of VOCs. Vacuum pumps are essential in air sparging by maintaining the necessary negative pressure gradient for effective contaminant removal.
5. Vacuum-Enhanced Recovery: Vacuum-enhanced recovery, also known as vacuum-enhanced extraction, is a remediation technique used to recover non-aqueous phase liquids (NAPLs) or dense non-aqueous phase liquids (DNAPLs) from the subsurface. Vacuum pumps are employed to create a vacuum or negative pressure gradient in recovery wells or trenches. This encourages the movement and extraction of NAPLs or DNAPLs towards the recovery points. Vacuum pumps facilitate the efficient recovery of these dense contaminants, which may not be easily recoverable using traditional pumping methods.
It’s important to note that different types of vacuum pumps, such as rotary vane pumps, liquid ring pumps, or air-cooled pumps, may be used in soil and groundwater remediation depending on the specific requirements of the remediation technique and the nature of the contaminants.
In summary, vacuum pumps play a vital role in various soil and groundwater remediation techniques, including soil vapor extraction, dual-phase extraction, groundwater pumping and treatment, air sparging, and vacuum-enhanced recovery. By creating and maintaining the necessary pressure differentials, vacuum pumps enable the efficient extraction, treatment, and removal of contaminants, contributing to the restoration of soil and groundwater quality.
Are There Different Types of Vacuum Pumps Available?
Yes, there are various types of vacuum pumps available, each designed to suit specific applications and operating principles. Here’s a detailed explanation:
Vacuum pumps are classified based on their operating principles, mechanisms, and the type of vacuum they can generate. Some common types of vacuum pumps include:
1. Rotary Vane Vacuum Pumps:
– Description: Rotary vane pumps are positive displacement pumps that use rotating vanes to create a vacuum. The vanes slide in and out of slots in the pump rotor, trapping and compressing gas to create suction and generate a vacuum.
– Applications: Rotary vane vacuum pumps are widely used in applications requiring moderate vacuum levels, such as laboratory vacuum systems, packaging, refrigeration, and air conditioning.
2. Diaphragm Vacuum Pumps:
– Description: Diaphragm pumps use a flexible diaphragm that moves up and down to create a vacuum. The diaphragm separates the vacuum chamber from the driving mechanism, preventing contamination and oil-free operation.
– Applications: Diaphragm vacuum pumps are commonly used in laboratories, medical equipment, analysis instruments, and applications where oil-free or chemical-resistant vacuum is required.
3. Scroll Vacuum Pumps:
– Description: Scroll pumps have two spiral-shaped scrolls—one fixed and one orbiting—which create a series of moving crescent-shaped gas pockets. As the scrolls move, gas is continuously trapped and compressed, resulting in a vacuum.
– Applications: Scroll vacuum pumps are suitable for applications requiring a clean and dry vacuum, such as analytical instruments, vacuum drying, and vacuum coating.
4. Piston Vacuum Pumps:
– Description: Piston pumps use reciprocating pistons to create a vacuum by compressing gas and then releasing it through valves. They can achieve high vacuum levels but may require lubrication.
– Applications: Piston vacuum pumps are used in applications requiring high vacuum levels, such as vacuum furnaces, freeze drying, and semiconductor manufacturing.
5. Turbo Molecular Vacuum Pumps:
– Description: Turbo pumps use high-speed rotating blades or impellers to create a molecular flow, continuously pumping gas molecules out of the system. They typically require a backing pump to operate.
– Applications: Turbo molecular pumps are used in high vacuum applications, such as semiconductor fabrication, research laboratories, and mass spectrometry.
6. Diffusion Vacuum Pumps:
– Description: Diffusion pumps rely on the diffusion of gas molecules and their subsequent removal by a high-speed jet of vapor. They operate at high vacuum levels and require a backing pump.
– Applications: Diffusion pumps are commonly used in applications requiring high vacuum levels, such as vacuum metallurgy, space simulation chambers, and particle accelerators.
7. Cryogenic Vacuum Pumps:
– Description: Cryogenic pumps use extremely low temperatures to condense and capture gas molecules, creating a vacuum. They rely on cryogenic fluids, such as liquid nitrogen or helium, for operation.
– Applications: Cryogenic vacuum pumps are used in ultra-high vacuum applications, such as particle physics research, material science, and fusion reactors.
These are just a few examples of the different types of vacuum pumps available. Each type has its advantages, limitations, and suitability for specific applications. The choice of vacuum pump depends on factors like required vacuum level, gas compatibility, reliability, cost, and the specific needs of the application.
editor by CX 2023-10-26
China best Rotary Vane Vacuum Gasoline Pump /Belt Drive Motor Rotary Pump Yb-80 vacuum pump diy
Product Description
Rotary vane vacuum gasoline pump /Belt Drive Motor Rotary Pump YB-80
Features:
YB Self-priming rotary vane pump with internal by-pass valve.
The pumps use a rotor with sliding vanes to draw the liquid.
The material of construction is nodular iron with sliding vanes built in a special self lubricating material.
Due to its efficiency the pumps can handle viscous and also volatile liquids and require less horsepower than other equivalent pumps.
Application:
Fuel oil delivery truck,Fleet refueling,Lube oil,Aviation refuelers,Transport of Petro Chemicals, gasoline, biofuels, solvents and any more.
Technical Specification |
||||
Model |
YB-50 |
YB-65 |
YB-80 |
YB-100 |
Size |
50mm/2″ |
65mm/2 1/2″ |
80mm/3″ |
100mm/4″ |
Pump Speed |
400~640RPM |
400~640RPM |
400~640RPM |
500RPM |
Max. Flow Rate |
150~300L/Min |
300~500L/Min |
600~1000L/Min |
1500~1900L/Min |
Vacuum |
0.5Bar |
|||
Working Pressure |
5Bar |
|||
Motor Power | 2.2KW | 4KW | 7.5KW | 18.5KW |
Dimension | 44×35×35cm | 46×34×37cm | 49×42×42cm | 58×55×61cm |
Net Weight | 31KG | 40KG | 68KG | 160KG |
Gross Weight | 34KG | 47KG | 74KG | 178KG |
Package | 1pc/Wooden Case |
FAQ
1.What is MOQ?
usually 1 set,and we can delivery by fast air express which not occupy space and not heavy for transport
2.Can you also OEM OR ODM for us?
Yes,we customize logo and brand according to customer requirement.
3.How about your machine quality, we are worry about the quality?
We are more than 30 years manufacturing experience of different kinds of flow meters.We strictly manufacture and manage according to IOS9001:2000 System.and can match all the CE standard or more strict standard.our machines are running well in more than 30 countries
After-sales Service: | One Year |
---|---|
Warranty: | Sales Service Available |
Flow Rate: | Variable Pump |
Type: | Self-priming Oil Pump |
Drive: | Electric |
Performance: | High Pressure |
Select vacuum pump
When choosing a vacuum pump, there are several things to consider. Diaphragm, scroll and Roots pumps are available. These pumps work similarly to each other, but they have some notable differences. Learn more about each type to make the right decision for your needs.
Diaphragm vacuum pump
Diaphragm vacuum pumps are very reliable and efficient for moving liquids. They are also compact and easy to handle. They can be used in a variety of applications, from laboratory workstations to large vacuum ovens. Diaphragm vacuum pumps are available worldwide. Advantages of this pump include low noise and corrosion resistance.
Diaphragm vacuum pumps work by increasing the chamber volume and decreasing the pressure. The diaphragm draws fluid into the chamber, diverting it back when it returns to its starting position. This hermetic seal allows them to transfer fluids without the need for lubricants.
Diaphragm vacuum pumps are the most efficient cleaning option and are easy to maintain. They do not produce oil, waste water or particles, which are common problems with other types of pumps. In addition, diaphragm pumps are low maintenance and have no sliding parts in the air path.
The simple design of diaphragm vacuum pumps makes them popular in laboratories. Oil-free construction makes it an economical option and is available in a variety of styles. They also have a variety of optional features. Diaphragm pumps are also chemically resistant, making them ideal for chemical laboratories.
Diaphragm vacuum pumps have speeds ranging from a few microns per minute (m3/h) to several m3/h. Some models have variable speed motors that reduce pumping speed when not in use. This feature extends their service interval. Standard diaphragm pumps are also popular in pharmaceutical and medical procedures. In addition, they are used in vacuum mattresses and cushions.
Scroll vacuum pump
Dry scroll vacuum pumps have many advantages over other types of vacuum pumps. Its compact design makes it ideal for a variety of general-purpose vacuum applications. They also offer oil-free operation. Additionally, many of these pumps feature chemically resistant PTFE components for increased chemical resistance.
These pumps are used in a variety of environments including laboratories, OEM equipment, R&D and medical applications. The single-stage design of these pumps makes them versatile and cost-effective. They are also suitable for a range of high field and radiation environments. Scroll pumps are also available in electronics-free and three-phase versions.
Oil-free scroll vacuum pumps are an excellent choice for those who don’t want the noise and mess associated with reciprocating pumps. Oil-free scroll pumps contain two helical scrolls interwoven in a helical motion that creates strong suction and directs steam to the exhaust. Because they do not require oil, they require minimal maintenance and downtime.
Oil-free scroll vacuum pumps are suitable for low to medium vacuum systems. Their durability and flexibility also make them suitable for many other applications. While they are often associated with dry vacuum pumps, they can also be used in chemical and analytical applications. Oil-free scroll pumps are also considered environmentally friendly.
The HiScroll range consists of three dry-sealed scroll pumps with nominal pumping speeds ranging from 6 to 20 m3/h. They feature advanced cutting edge sealing technology and reduce power requirements. They are also compact and noiseless, making them an excellent choice in quiet work environments.
Roots Pump
Roots vacuum pumps are an important part of vacuum systems in various industries. These pumps are used to generate high vacuum in a variety of applications including degassing, rolling and vacuum metallurgy. They are also used in vacuum distillation, concentration and drying in the pharmaceutical, food and chemical industries.
These pumps are made of non-magnetized rotors that sit in the vacuum of the drive shaft. In addition, the stator coils are fan-cooled, eliminating the need for shaft seals. These pumps are typically used in applications involving high purity and toxic gases.
The theoretical pumping speed of a Roots pump depends on the gas type and outlet pressure. Depending on the size and power of the pump, it can range from 200 cubic meters per hour (m3/h) to several thousand cubic meters per hour. Typical Roots pumps have pumping speeds between 10 and 75.
Roots pumps are designed to reach high pressures in a relatively short period of time. This enables them to significantly reduce vacation time. Their compact design also makes them quiet. They also require no oil or moving parts, making them ideal for a variety of applications. However, they also have some limitations, including relatively high service costs and poor pumping performance at atmospheric pressure.
The RUVAC Roots pump is a versatile and efficient vacuum pump. It is based on the dry compressor roots principle already used in many vacuum technologies. This principle has been used in many different applications, including vacuum furnaces and vacuum coating. The combination of the Roots pump and the backing vacuum pump will increase the pumping speed at low pressure and expand the working range of the backing vacuum pump.
Electric vacuum pump
Electric vacuum pumps have many applications. They help move waste and debris in various processes and also help power instruments. These pumps are used in the automotive, scientific and medical industries. However, there are some important factors to consider before buying. In this article, we will discuss some important factors to consider.
First, you should consider the base pressure of the pump. Some pumps can reach a base pressure of 1 mbar when new, while others can reach a base pressure of 1 x 10-5 mbar. The higher the base pressure, the more energy is required to reverse atmospheric pressure.
Another important consideration is noise. Electric vacuum pumps need to be quiet. Especially for hybrid and electric vehicles, low noise is very important. Therefore, electric vacuum pumps with low noise characteristics have been developed. The pump’s integrated motor was developed in-house to avoid expensive vibration decoupling elements. Therefore, it exhibits high structure-borne noise decoupling as well as low airborne noise emissions. This makes the electric vacuum pump suitable for mounting on body components without disturbing vibrations.
Depending on the type of application, electric vacuum pumps can be used for workholding, clamping or clamping applications. They can also be used for solid material transfer. The electric pump with 20 gallon tank has a maximum vacuum of 26″ Hg. It also houses a 1,200 square inch sealed vacuum suction cup. It also has a coolant trap.
The automotive electric vacuum pump market was estimated at USD 1.11 billion in 2018. Electric vacuum pumps are used in automobiles for many different applications. These pumps provide vacuum assistance to a variety of automotive systems, including brake boosters, headlight doors, heaters, and air conditioning systems. They are also quieter than traditional piston pumps.
Cryogenic vacuum pump
Cryogenic vacuum pumps are used in many different processes, including vacuum distillation, electron microscopy, and vacuum ovens. These pumps feature a thin-walled shaft and housing to minimize heat loss from the motor. They are also capable of high speed operation. High-speed bearings increase the hydraulic efficiency of the pump while minimizing heating of the process fluid. Cryopumps also come in the form of laboratory dewars and evaporators.
A key feature of a cryopump is its ability to span a wide pressure range. Typically, such pumps have a maximum pressure of 12 Torr and a minimum pressure of 0.8 Torr. However, some cryopumps are capable of pumping at higher pressures than this. This feature extends pump life and limits gas loading.
Before using a cryopump, you need to make sure the system is cold and the valve is closed. The gas in the chamber will then start to condense on the cold array of the pump. This condensation is the result of the latent heat released by the gas.
Cryogenic vacuum pumps are usually equipped with a Polycold P Cryocooler, which prevents the backflow of water through the pump. Such coolers are especially useful in load lock systems. As for its functionality, SHI Cryogenics Group offers two different styles of cryopumps. These systems are ideal for demanding flat panel, R&D and coating applications. They are available in sizes up to 20 inches and can be configured for automatic regeneration or standard settings.
The cryogenic vacuum pump market is segmented by application and geography. The report identifies major global companies, their shares and trends. It also includes product introductions and sales by region.
editor by CX 2023-05-23
China Hot selling Rotary Vane Vacuum Gasoline Pump /Belt Drive Motor Rotary Pump Yb-80 vacuum pump diy
Product Description
Rotary vane vacuum gasoline pump /Belt Drive Motor Rotary Pump YB-80
Features:
YB Self-priming rotary vane pump with internal by-pass valve.
The pumps use a rotor with sliding vanes to draw the liquid.
The material of construction is nodular iron with sliding vanes built in a special self lubricating material.
Due to its efficiency the pumps can handle viscous and also volatile liquids and require less horsepower than other equivalent pumps.
Application:
Fuel oil delivery truck,Fleet refueling,Lube oil,Aviation refuelers,Transport of Petro Chemicals, gasoline, biofuels, solvents and any more.
Technical Specification |
||||
Model |
YB-50 |
YB-65 |
YB-80 |
YB-100 |
Size |
50mm/2″ |
65mm/2 1/2″ |
80mm/3″ |
100mm/4″ |
Pump Speed |
400~640RPM |
400~640RPM |
400~640RPM |
500RPM |
Max. Flow Rate |
150~300L/Min |
300~500L/Min |
600~1000L/Min |
1500~1900L/Min |
Vacuum |
0.5Bar |
|||
Working Pressure |
5Bar |
|||
Motor Power | 2.2KW | 4KW | 7.5KW | 18.5KW |
Dimension | 44×35×35cm | 46×34×37cm | 49×42×42cm | 58×55×61cm |
Net Weight | 31KG | 40KG | 68KG | 160KG |
Gross Weight | 34KG | 47KG | 74KG | 178KG |
Package | 1pc/Wooden Case |
FAQ
1.What is MOQ?
usually 1 set,and we can delivery by fast air express which not occupy space and not heavy for transport
2.Can you also OEM OR ODM for us?
Yes,we customize logo and brand according to customer requirement.
3.How about your machine quality, we are worry about the quality?
We are more than 30 years manufacturing experience of different kinds of flow meters.We strictly manufacture and manage according to IOS9001:2000 System.and can match all the CE standard or more strict standard.our machines are running well in more than 30 countries
After-sales Service: | One Year |
---|---|
Warranty: | Sales Service Available |
Flow Rate: | Variable Pump |
Type: | Self-priming Oil Pump |
Drive: | Electric |
Performance: | High Pressure |
Types of vacuum pumps
A vacuum pump is a device that pulls gas molecules out of a sealed volume and maintains a partial vacuum. Its job is to create a relative vacuum within its capabilities. Several types of vacuum pumps are available, including scroll and rotary piston models. Each has its own characteristics and uses. To learn more, read this article.
Screw Pump
Screw vacuum pumps use a mechanical screw to move an air or gas chamber to the axial housing wall. The movement of the chamber reduces the volume of gas, which is pre-compressed before being expelled through the pressure connection. These pumps can be single-pitch models or variable-pitch models. Variable pitch models feature variable pitch rotors that help distribute heat loads evenly across the rotor. Some models also include a thermostatic control valve that shuts off the pump if the water temperature gets too high. Screw vacuum pumps are available in single-ended or double-ended designs. Single-ended and double-ended screw pumps provide up to 3.7 x 10-4 Torr and an ultimate vacuum of 900 m3/h (560 cfm), which is sufficient for many industrial processes. Progressive cavity pumps are particularly suitable for vapor compression applications. These pumps also have an internal rotor to minimize layer formation. Combined with air cooling, they are suitable for use in hazardous environments. In addition, the screw rotor design prevents the build-up of substances in the pump cavity that could react with high temperatures. These pumps are also easily removable for quick cleaning. Screw vacuum pumps are also designed for low cost and minimal maintenance. Agknx screw vacuum pumps are designed in Germany and are very reliable and economical. Pump performance depends on cooling system and temperature. The temperature of the water used should be kept within a certain range, otherwise the pump may overheat and fail. Screw vacuum pumps are often used in scientific experiments. They are standard main pumps in large storage rings, gravitational wave detectors, and space simulation chambers. One of the largest ultra-high vacuum chambers in the world is made of screw vacuum pumps. An example is the KATRIN experiment. There are two types of screw vacuum pumps: oil-sealed and dry. Oil-sealed screw pumps use oil as a sealant and coolant. They are suitable for demanding vacuum applications such as woodworking and plastics processing. Dry screw pumps have an air-cooled chamber, and they can achieve higher vacuum levels than oil-sealed pumps.
Rotary Piston Vacuum Pumps
Rotary Piston Vacuum Pumps provide the rugged performance essential for applications requiring vacuum. They can deliver flow rates up to 1280 acfm and reach deep vacuum levels up to 0.0004 Torr. They are available in single-stage and two-stage models. The report also provides detailed information about the key players, their financial status, and business overview. A rotary piston vacuum pump is a versatile and affordable vacuum device. They are available in single-stage and two-stage configurations with higher capacity and higher vacuum. They can be easily maintained by an in-house maintenance team or by a local third-party service shop. Pump manufacturers can also provide services. Rotary piston vacuum pumps are available in single-stage and compound designs. They are ideal for a variety of applications. Their high-performance design enables them to operate at any pressure up to atmospheric pressure. They also have no metal-to-metal contact, which makes them ideal for dirty applications. Whether you need a pump that can operate at high or low pressure, a rotary piston vacuum pump is an excellent choice. When purchasing a rotary piston vacuum pump, it is important to choose a manufacturer with a reputation for providing high-quality service and repairs. In addition to the high quality of the pump, you also need to ensure its availability. You should also consider the cost and quality of the part. A good vacuum pump company should also provide technical support, service support and accessories. Oil-free pumps are a popular choice for laboratories, clean rooms and confined rooms. Their high-quality parts are made from lightweight, corrosion-resistant and specially formulated polymers. Oil-free pumps can handle high levels of air moisture and are excellent at removing contaminants. However, they are not suitable for applications containing organic vapors or acids. Atlas Copco’s GLS rotary piston pumps are a popular choice for industrial vacuum applications. Its space-saving design makes it an ideal solution for harsh environments. It is also very reliable and has low lifecycle costs. It has an automatic lubrication system and water mizer to minimize water consumption.
Scroll Vacuum Pumps
<br Scroll Vacuum Pumps can be used to pump air, gases, and other fluids. They are suitable for creating a vacuum in transfer chambers, mass spectrometers, and load lock chambers. They are also ideal for helium leak detectors and other analytical equipment. Scroll vacuum pumps are available in a variety of models, including the diaphragm, turbine, and oil-dry scroll models. They are used in a variety of industries, including the semiconductor, biotechnology, and pharmaceutical industries. Flexible and durable oil-free scroll vacuum pumps are an excellent choice for light industrial, general laboratory, and research applications. They also offer several advantages over other vacuum pumps, including low operating costs and environmental sustainability. Scroll vacuum pumps do not require oil, which is a big advantage in terms of cost. Scroll vacuum pumps are also quieter. Scroll vacuum pumps are designed for low, medium, and high vacuum systems. They create a high vacuum and cannot tolerate particles. Although they are relatively small, they are ideal for vacuum laboratory applications and are also suitable for dry vacuum pumping. They can be combined with chemically resistant PTFE components, making them more suitable for chemical applications. Scroll vacuum pumps feature a unique design that makes them very versatile and efficient. The pump has two helical structures, one is fixed and the other is rotating, which can effectively pump gas and liquid. When the rotor begins to move, the gas is compressed slightly and then flows through the system to the exhaust port. Scroll vacuum pumps are efficient, oil-free and compact. Known for their high tolerance to the atmosphere, they feature sensorless INFORM(r) control to minimize noise and vibration. These vacuum pumps are ideal for low to medium flow applications including analytical equipment, freeze dryers, vacuum coaters and mass spectrometers. The most important advantage of a scroll vacuum pump is its reliability. They can be used for three years or more without problems and are easy to maintain. With proper maintenance, they can reduce repair costs.
Diaphragm vacuum pumps
Diaphragm vacuum pumps are used in a variety of industrial processes. These pumps use an elastic diaphragm fixed around the outer diameter. They are efficient and can handle most types of liquids. They are commonly used for dewatering, filling and water removal. These pumps are easy to maintain. Diaphragm vacuum pumps are available in a variety of sizes and power outputs. Oil-free diaphragm vacuum pumps do not require oil, lubrication and cooling. These pumps are compatible with many types of laboratory equipment. Diaphragm vacuum pumps are equipped with dual voltage motors and DC drives for greater flexibility and durability. Diaphragm vacuum pumps can achieve higher vacuum levels than rotary vane pumps. They are more efficient than diaphragm pumps. They do not require oil and require less maintenance than their rotary vane counterparts. However, the diaphragms of these pumps may need to be replaced every few years. Diaphragm vacuum pumps are the most popular type of vacuum pump and can be used for a variety of applications. They can be used for everyday work and can be large enough to be used in a vacuum oven or rotary evaporator. Diaphragm vacuum pumps use pulsed motion to move air. They eliminate the need for oil and are highly chemical and steam resistant. They can handle a wide variety of samples, including high viscosity liquids. Diaphragm vacuum pumps are generally smaller than other types of vacuum pumps. Scroll pumps are made of metal and are generally recommended for solvent and water samples. They are not recommended for high acid samples. However, they are suitable for freeze drying. They can also be used for concentration applications. In this way, they have greater displacement capacity and can reach higher ultimate vacuum levels.
editor by CX 2023-05-22
China manufacturer Rotary Vane Vacuum Gasoline Pump /Belt Drive Motor Rotary Pump Yb-80 vacuum pump engine
Product Description
Rotary vane vacuum gasoline pump /Belt Drive Motor Rotary Pump YB-80
Features:
YB Self-priming rotary vane pump with internal by-pass valve.
The pumps use a rotor with sliding vanes to draw the liquid.
The material of construction is nodular iron with sliding vanes built in a special self lubricating material.
Due to its efficiency the pumps can handle viscous and also volatile liquids and require less horsepower than other equivalent pumps.
Application:
Fuel oil delivery truck,Fleet refueling,Lube oil,Aviation refuelers,Transport of Petro Chemicals, gasoline, biofuels, solvents and any more.
Technical Specification |
||||
Model |
YB-50 |
YB-65 |
YB-80 |
YB-100 |
Size |
50mm/2″ |
65mm/2 1/2″ |
80mm/3″ |
100mm/4″ |
Pump Speed |
400~640RPM |
400~640RPM |
400~640RPM |
500RPM |
Max. Flow Rate |
150~300L/Min |
300~500L/Min |
600~1000L/Min |
1500~1900L/Min |
Vacuum |
0.5Bar |
|||
Working Pressure |
5Bar |
|||
Motor Power | 2.2KW | 4KW | 7.5KW | 18.5KW |
Dimension | 44×35×35cm | 46×34×37cm | 49×42×42cm | 58×55×61cm |
Net Weight | 31KG | 40KG | 68KG | 160KG |
Gross Weight | 34KG | 47KG | 74KG | 178KG |
Package | 1pc/Wooden Case |
FAQ
1.What is MOQ?
usually 1 set,and we can delivery by fast air express which not occupy space and not heavy for transport
2.Can you also OEM OR ODM for us?
Yes,we customize logo and brand according to customer requirement.
3.How about your machine quality, we are worry about the quality?
We are more than 30 years manufacturing experience of different kinds of flow meters.We strictly manufacture and manage according to IOS9001:2000 System.and can match all the CE standard or more strict standard.our machines are running well in more than 30 countries
After-sales Service: | One Year |
---|---|
Warranty: | Sales Service Available |
Flow Rate: | Variable Pump |
Type: | Self-priming Oil Pump |
Drive: | Electric |
Performance: | High Pressure |
Types of vacuum pumps
A vacuum pump is a device that pulls gas molecules out of a sealed volume and maintains a partial vacuum. Its job is to create a relative vacuum within its capabilities. Several types of vacuum pumps are available, including scroll and rotary piston models. Each has its own characteristics and uses. To learn more, read this article.
Screw Pump
Screw vacuum pumps use a mechanical screw to move an air or gas chamber to the axial housing wall. The movement of the chamber reduces the volume of gas, which is pre-compressed before being expelled through the pressure connection. These pumps can be single-pitch models or variable-pitch models. Variable pitch models feature variable pitch rotors that help distribute heat loads evenly across the rotor. Some models also include a thermostatic control valve that shuts off the pump if the water temperature gets too high. Screw vacuum pumps are available in single-ended or double-ended designs. Single-ended and double-ended screw pumps provide up to 3.7 x 10-4 Torr and an ultimate vacuum of 900 m3/h (560 cfm), which is sufficient for many industrial processes. Progressive cavity pumps are particularly suitable for vapor compression applications. These pumps also have an internal rotor to minimize layer formation. Combined with air cooling, they are suitable for use in hazardous environments. In addition, the screw rotor design prevents the build-up of substances in the pump cavity that could react with high temperatures. These pumps are also easily removable for quick cleaning. Screw vacuum pumps are also designed for low cost and minimal maintenance. Agknx screw vacuum pumps are designed in Germany and are very reliable and economical. Pump performance depends on cooling system and temperature. The temperature of the water used should be kept within a certain range, otherwise the pump may overheat and fail. Screw vacuum pumps are often used in scientific experiments. They are standard main pumps in large storage rings, gravitational wave detectors, and space simulation chambers. One of the largest ultra-high vacuum chambers in the world is made of screw vacuum pumps. An example is the KATRIN experiment. There are two types of screw vacuum pumps: oil-sealed and dry. Oil-sealed screw pumps use oil as a sealant and coolant. They are suitable for demanding vacuum applications such as woodworking and plastics processing. Dry screw pumps have an air-cooled chamber, and they can achieve higher vacuum levels than oil-sealed pumps.
Rotary Piston Vacuum Pumps
Rotary Piston Vacuum Pumps provide the rugged performance essential for applications requiring vacuum. They can deliver flow rates up to 1280 acfm and reach deep vacuum levels up to 0.0004 Torr. They are available in single-stage and two-stage models. The report also provides detailed information about the key players, their financial status, and business overview. A rotary piston vacuum pump is a versatile and affordable vacuum device. They are available in single-stage and two-stage configurations with higher capacity and higher vacuum. They can be easily maintained by an in-house maintenance team or by a local third-party service shop. Pump manufacturers can also provide services. Rotary piston vacuum pumps are available in single-stage and compound designs. They are ideal for a variety of applications. Their high-performance design enables them to operate at any pressure up to atmospheric pressure. They also have no metal-to-metal contact, which makes them ideal for dirty applications. Whether you need a pump that can operate at high or low pressure, a rotary piston vacuum pump is an excellent choice. When purchasing a rotary piston vacuum pump, it is important to choose a manufacturer with a reputation for providing high-quality service and repairs. In addition to the high quality of the pump, you also need to ensure its availability. You should also consider the cost and quality of the part. A good vacuum pump company should also provide technical support, service support and accessories. Oil-free pumps are a popular choice for laboratories, clean rooms and confined rooms. Their high-quality parts are made from lightweight, corrosion-resistant and specially formulated polymers. Oil-free pumps can handle high levels of air moisture and are excellent at removing contaminants. However, they are not suitable for applications containing organic vapors or acids. Atlas Copco’s GLS rotary piston pumps are a popular choice for industrial vacuum applications. Its space-saving design makes it an ideal solution for harsh environments. It is also very reliable and has low lifecycle costs. It has an automatic lubrication system and water mizer to minimize water consumption.
Scroll Vacuum Pumps
<br Scroll Vacuum Pumps can be used to pump air, gases, and other fluids. They are suitable for creating a vacuum in transfer chambers, mass spectrometers, and load lock chambers. They are also ideal for helium leak detectors and other analytical equipment. Scroll vacuum pumps are available in a variety of models, including the diaphragm, turbine, and oil-dry scroll models. They are used in a variety of industries, including the semiconductor, biotechnology, and pharmaceutical industries. Flexible and durable oil-free scroll vacuum pumps are an excellent choice for light industrial, general laboratory, and research applications. They also offer several advantages over other vacuum pumps, including low operating costs and environmental sustainability. Scroll vacuum pumps do not require oil, which is a big advantage in terms of cost. Scroll vacuum pumps are also quieter. Scroll vacuum pumps are designed for low, medium, and high vacuum systems. They create a high vacuum and cannot tolerate particles. Although they are relatively small, they are ideal for vacuum laboratory applications and are also suitable for dry vacuum pumping. They can be combined with chemically resistant PTFE components, making them more suitable for chemical applications. Scroll vacuum pumps feature a unique design that makes them very versatile and efficient. The pump has two helical structures, one is fixed and the other is rotating, which can effectively pump gas and liquid. When the rotor begins to move, the gas is compressed slightly and then flows through the system to the exhaust port. Scroll vacuum pumps are efficient, oil-free and compact. Known for their high tolerance to the atmosphere, they feature sensorless INFORM(r) control to minimize noise and vibration. These vacuum pumps are ideal for low to medium flow applications including analytical equipment, freeze dryers, vacuum coaters and mass spectrometers. The most important advantage of a scroll vacuum pump is its reliability. They can be used for three years or more without problems and are easy to maintain. With proper maintenance, they can reduce repair costs.
Diaphragm vacuum pumps
Diaphragm vacuum pumps are used in a variety of industrial processes. These pumps use an elastic diaphragm fixed around the outer diameter. They are efficient and can handle most types of liquids. They are commonly used for dewatering, filling and water removal. These pumps are easy to maintain. Diaphragm vacuum pumps are available in a variety of sizes and power outputs. Oil-free diaphragm vacuum pumps do not require oil, lubrication and cooling. These pumps are compatible with many types of laboratory equipment. Diaphragm vacuum pumps are equipped with dual voltage motors and DC drives for greater flexibility and durability. Diaphragm vacuum pumps can achieve higher vacuum levels than rotary vane pumps. They are more efficient than diaphragm pumps. They do not require oil and require less maintenance than their rotary vane counterparts. However, the diaphragms of these pumps may need to be replaced every few years. Diaphragm vacuum pumps are the most popular type of vacuum pump and can be used for a variety of applications. They can be used for everyday work and can be large enough to be used in a vacuum oven or rotary evaporator. Diaphragm vacuum pumps use pulsed motion to move air. They eliminate the need for oil and are highly chemical and steam resistant. They can handle a wide variety of samples, including high viscosity liquids. Diaphragm vacuum pumps are generally smaller than other types of vacuum pumps. Scroll pumps are made of metal and are generally recommended for solvent and water samples. They are not recommended for high acid samples. However, they are suitable for freeze drying. They can also be used for concentration applications. In this way, they have greater displacement capacity and can reach higher ultimate vacuum levels.
editor by CX 2023-05-19